Do AT LEAST THREE (3) of the following:

1. Use the symmetric version of the Lovász Local Lemma to prove that
 \(R(k,k) > \frac{\sqrt{2}}{2} (1 - o(1)) k^{2k/2} \). This is an improvement of a multiplicative factor of 2 over the naive probabilistic bound in Erdős’ 1947 paper.

2. Prove the Slicing Lemma for \(\epsilon \)-regular pairs:

 Lemma (Slicing Lemma) Let \((A, B)\) be an \(\epsilon \)-regular pair with density \(d \). If \(A' \subseteq A \) and \(B' \subseteq B \) such that \(|A'| \geq \epsilon |A|\) and \(|B'| \geq \epsilon |B|\), then \((A', B')\) is an \(\epsilon' \)-regular pair, with \(\epsilon' = \max \left\{ 2\epsilon, \frac{|A|}{|A'|}, \frac{|B|}{|B'|} \epsilon \right\} \) and density in \([d - \epsilon, d + \epsilon]\).

3. Consider the following definition:

 Definition. A pair \((A, B)\) is said to be \((\epsilon, \delta)\)-super-regular if the following occur:
 - \((A, B)\) is \(\epsilon \)-regular,
 - \(\deg_B(a) \geq \delta |B| \), for all \(a \in A \) and
 - \(\deg_A(b) \geq \delta |A| \), for all \(b \in B \).

 Prove the following proposition:

 Proposition. Let \(\epsilon < 1/2 \) and \(d > 2\epsilon \). Let \((A, B)\) be an \(\epsilon \)-regular pair with density \(d \), \(|A| = |B| = L\). Then there exist \(A' \subseteq A \) and \(B' \subseteq B \) such that
 - \((A', B')\) is \((2\epsilon, d - 2\epsilon)\)-super-regular,
 - \(|A'| = |B'| = \lceil (1 - \epsilon) L \rceil\), and
 - \(d(A', B') \in [d - \epsilon, d + \epsilon] \).

4. The Crowdsource Problem: For this problem, you can work together and discuss the problem with your fellow students. You must write up your own solution, however.

 An arithmetic progression of length \(k \) is a sequence \(a, a + d, a + 2d, \ldots, a + (k - 1)d \). The van der Waerden number \(W(k) \) is the least \(n \) so that if
\{1, \ldots, n\} is two-colored, then it has a monochromatic arithmetic progression of length \(k\).

Use the Lovász Local Lemma to prove that \(W(k) > (1 - o(1))2^{k-1} \frac{2^k - 1}{ek}\).