M608 (S12) Homework 2

Due date: 16 February 2012

Do ALL 3 of the following:

1. Prove the following for real-valued random variables \(X, X_1, \ldots, X_n \)
 - \(\mathbb{E}[X^2] \geq (\mathbb{E}[X])^2 \).
 - \(\mathbb{E}[X_1 + \cdots + X_n] = \mathbb{E}[X_1] + \cdots + \mathbb{E}[X_n] \)
 - If \(X_1, \ldots, X_n \) are pairwise independent, each with finite mean and variance, then
 \[
 \text{Var} \left(\sum_{i=1}^{n} X_i \right) = \sum_{i=1}^{n} \text{Var}(X_i).
 \]
 - If \(X_1, \ldots, X_n \) are mutually independent, then
 \[
 \mathbb{E} \left[\prod_{i=1}^{n} X_i \right] = \prod_{i=1}^{n} \mathbb{E}[X_i].
 \]
 (You only need to prove this last one for discrete random variables.)

2. Prove the following:
 - If \(\alpha \) is a positive real number and \(y \) is a real number such that \(|y| \leq 1 \), then
 \[
 e^{\alpha y} \leq \cosh(\alpha) + \sinh(\alpha)y.
 \]
 Hence, if \(Y \) is a random variable with \(|Y| \leq 1 \), then \(\mathbb{E}[e^{\alpha Y}] \leq \mathbb{E}[(\cosh(\alpha) + \sinh(\alpha)Y) = \cosh(\alpha) + \sinh(\alpha)\mathbb{E}[Y].
 \]
 - If \(x \) is a real number, then \(\cosh(x) \leq e^{x^2/2}. \)

3. The Crowdsource Problem: For this problem, you can work together and discuss the problem with your fellow students. You must write up your own solution, however.
 - If \(G \) is a graph on \(n \) vertices with no isolated vertices, then \(G \) has a dominating set of size at most \(\lfloor n/2 \rfloor \).
 - For any positive integer \(n \) and any \(\delta, 1 \leq \delta \leq n-1 \), construct a simple graph on \(n \) vertices with minimum degree \(\delta \) and no dominating set smaller than \(\left\lfloor \frac{n}{\delta+1} \right\rfloor \).
• For any positive integer n and any even δ, $1 \leq \delta \leq n - 2$, construct a simple graph on n vertices with minimum degree δ and no dominating set smaller than $2 \left\lfloor \frac{n}{\delta+2} \right\rfloor$.