M608 (S12) Homework 1

Due date: 31 January 2012

Do any three (3) of #1-#4. Also, do #5:

1. Assuming König’s theorem, prove Hall’s matching theorem.

 Theorem (König’s theorem). Let G be a bipartite graph. The maximum size of a matching in G is equal to the minimum size of a vertex cover in G.

 Theorem (Hall’s matching theorem). Let $G = (A, B; E)$ be a bipartite graph. The graph G has a matching that saturates A if and only if
 \[
 |N(X)| \geq |X| \quad \text{for all} \quad X \subseteq A. \tag{1}
 \]

2. Prove that $T_{n,r}$ is the n-vertex r-partite graph with the most number of edges.

3. Assuming the original form of Hajnal-Szemerédi, prove the complementary form.

 Theorem (Hajnal-Szemerédi). If G is a simple graph on n vertices with maximum degree $\Delta(G) \leq r$, then G has an equitable $(r + 1)$-coloring.

 An equitable k-coloring of a graph G is a proper coloring of G in k colors such that any two color classes differ in size by at most 1.

 Theorem (Hajnal-Szemerédi – complementary form). If G is a simple graph on n vertices with minimum degree $\delta(G) \geq \frac{k - 1}{k}n$, then G contains a subgraph that consists of $\lfloor n/k \rfloor$ vertex-disjoint copies of K_k.

4. The diameter of a graph G is the largest distance between two vertices. Prove that, for integers $r, d \geq 1$, an r-regular graph with diameter d has at most $1 + r \sum_{i=0}^{d-1}(r - 1)^i$ vertices.

5. **The Crowdsource Problem**: For this problem, you can work together and discuss the problem with your fellow students. You must write up your own solution, however. Do two of the following three:
(a) A matrix with real nonnegative entries is **doubly stochastic** if the sum of the entries in any row and any column equals one. A **permutation matrix** is a doubly stochastic $(0,1)$-matrix. A matrix A is a **convex combination** of matrices A_1, \ldots, A_s if there exist nonnegative reals $\lambda_1, \ldots, \lambda_s$ such that $\sum_{i=1}^{s} \lambda_i = 1$ and $A = \sum_{i=1}^{s} \lambda_i A_i$.

Use Hall’s matching theorem to prove the Birkhoff-Von Neumann theorem:

Theorem (Birkhoff-Von Neumann). Any doubly stochastic matrix can be written as a convex combination of permutation matrices.

Hint: An $n \times n$ matrix gives rise naturally to a bipartite graph $G = (A, B; E)$ with $|A| = |B| = n$ and a permutation matrix corresponds to a perfect matching.

(b) A network is a directed graph with a **source** s and a **target** t with each edge assigned an integer called its capacity. An **edge cut** $[S, S']$ is the set of edges directed from S to S'. The **value** of an edge cut is the sum of the capacities. A **flow** is a function f on the arcs in which $f(u, v)$ is at most the capacity of (u, v) and we define $f^+(v) = \sum_u f(v, u)$ (flow out of v) and $f^-(v) = \sum_u f(u, v)$ (flow into v) with the condition that $f^+(v) = f^-(v)$ for all $v \notin \{s, t\}$. The **value of a flow** is $f^+(s) - f^-(s)$.

Prove the Max Flow-Min Cut theorem. You may do so directly (i.e., without Hall).

Theorem (Max Flow-Min Cut). The maximum value of a flow in a network D is equal to the value of a minimum cut of D.

(c) Using the Max Flow-Min Cut theorem, prove Hall’s theorem.