690I Scribe Notes for Feb 28 2006

Chad Brewbaker

April 5, 2006
0.1 scriven

Recall Erdős-Stone:
For any integers $p \geq 2$, $t \geq 1$,

$$\text{ex}(n, K_k(t, \ldots t)) = \left(1 - \frac{1}{p-1} * \binom{n}{2}\right) + o(n^2)$$

where $\text{ex}(n, G)$ is the maximum number of edges in an order n graph with no subgraph isomorphic to G.

Erdős-Simonovits:
Let L be a family of graphs, $p = \min\{\chi(l)\} 1, l \in L$. Let $\text{ex}(n, L) =$ the maximum number of edges in an order n graph with no subgraphs isomorphic to any member $l \in L$. Then $\text{ex}(n, L) = \left(1 - \frac{1}{p-1}\right) \binom{n}{2} + o(n^2)$.

The proof is when $\max_{l \in L} (|V(l)|) \leq K$.

If you have a $K_p(K, \ldots K) \supseteq l$ in the original.

Let $\epsilon = \left(\frac{\beta}{6}\right)^h, h = |V(H)|$.

Then $e(G_n) > \left(1 - \frac{1}{p-1} + \beta\right) \binom{n}{2}$

$$\Rightarrow \|H \rightarrow G_n\| > \left(\frac{en}{M(\epsilon)}\right)^h$$

Recall Hajnal-Szemerédi
If $\delta(G_n) \geq (1 - \frac{1}{r}) n$, then there exists a subgraph which consists of $\left\lfloor \frac{n}{r} \right\rfloor$ vertex disjoint copies of K_r for all n.

Let C_4 be the cycle on 4 vertices.

If $\delta(G_n) \geq \frac{3}{4} n$, then $\exists \left\lfloor \frac{n}{r} \right\rfloor$ vertex disjoint copies of K_4, hence C_4.

Equivalent to Hanjal-Szemerédi if $\Delta(G_n) < \frac{n}{2}$ and $r|n$, then there exists a proper coloring of G_n where every color class is of size exactly r.

Theorem 1 (Alon-Yuster(1992)). $\forall \alpha > 0$ and graph H, $\exists n_0$ such that in $n \geq n_0$, $\delta(G_n) > (1 - \frac{1}{\chi(H)} + \alpha)n$ then there is a family of $\lfloor \frac{1-\alpha}{\chi(H)} \rfloor n$ vertex-disjoint copies of H in G_n.

1
If $\alpha(G_n) > (\frac{1}{2} + \alpha)n$ then there is a family of $\lfloor \frac{(1-\alpha)n}{4} \rfloor$ vertex-disjoint copies of C_4 (for $n \geq n_0$).

Conjecture 1. $\forall H, \exists K$ such that if $\delta(G_n) > (1 - \frac{1}{\chi(H)})n$ then G_n has a family of vertex-disjoint copies of H that we use up all but K vertices. ($k \neq 0$ even if $V(H)$ divides n)

Let $H = K_2, \delta(G_n) \geq \frac{n}{2}$

Dirac says $G_n \supseteq C_n$ a cycle on n vertices.

If n is even $C_n \supseteq$ a perfect matching.

If n is odd $C_n \supseteq$ a matching of size $\lfloor \frac{n}{2} \rfloor$.

If $H = K_1$ then $K = 0$, if $H = K_2$ then $K = 1$.

$K \neq 0$ is shown by Alon-Yuster[1].

Tripartite $G = (V_1, V_2, V_3) | V_1 | = V_2 | = V_3 | = N$.

If each bipartite graph (v_i, v_j) has minimum degree $\leq \frac{n}{3} + 2h - 1$, then there exists $\lfloor \frac{N}{h} \rfloor$ copies of $K_{h,h,h}$.

Definition 1 ((ϵ, δ)-super-regularity). Given a pair (A, B) we say that (A, B) is $(\epsilon - \delta)$-super-regular if $\forall X \subseteq A, \forall Y \subseteq B$ satisfying $|X| > \epsilon|A|$ and $|Y| > \epsilon|B|$ we have $e(x, y) > \delta|X||Y|$ and $\deg(a) > \delta|B|\forall a \in A$

$\deg(b) > \delta|A|\forall b \in B$

Theorem 2. Let $\epsilon < \frac{1}{2}, d > 2\epsilon$. Let (A, B) be an ϵ-regular pair with density d, $|A| = |B| = L$.

Then $\exists A' \subseteq A, B' \subseteq B$ such that (A', B') is $(\epsilon, d - 2\epsilon)$ super-regular, $|A'|, |B'| \geq (1 - \epsilon)L$

$d(A', B') \in (d - \epsilon, d + \epsilon)$

Lemma 1 (Blow-up lemma by Komlós-Sárközy-Szemerédi(1994)). Given a graph R of order r and positive parameters, δ, Δ, there exists $\epsilon > 0$ such that the following holds.

Let n_1, \ldots, n_r be arbitrary positive integers and replace the vertices of R with pairwise disjoint sets V_1, \ldots, V_r of sizes n_1, \ldots, n_0 (blowing up)

$R(n_1, \ldots, n_r)$ is obtained by replacing each edge $(v_i, v_j) \in E(R)$ with the complete bipartite graph between V_i and V_j. 2
G is obtained by replacing each edge $(v_i, v_j) \in E(R)$ with an (ϵ, δ) super regular pair.

If a graph H, $\Delta(H) \leq \Delta$ (max degree) is embeddable into $R(n_1, \ldots, n_r)$ then it is embeddable into G.

For example let δ be given, then there exists $\epsilon > 0$ such that every (ϵ, δ)-super-regular pair (with both sets the same size) is Hamiltonian.

$R = K_2$
$R(L, L)$ is Hamiltonian
$G = (A, B), |A| = |B| = L$, (ϵ, δ)-super-regular

Every ϵ-regular pair $|A| = |B| = L$ of density $\geq \delta + 2\epsilon$, $(\epsilon < \frac{1}{2})$, has a cycle of length $\geq 2(1 - \epsilon)L$.

Bibliography