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Start with a set 7 of edge-colored triangles. For example, 7 could be
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Every color is directed or not (do not use both a directed red and an undirected red). For example,
—green—> is directed and —red— is undirected. Think of the triangles in 7 as tiles. There is an
unlimited supply of each type of tile.

Problem. Given a (possibly infinite) number n, can K,, (the complete graph on n points) be “tiled”
with edge-colored triangles from 7 so that (1) for every three points in K, the tile they determine
has colors that match one of the tiles in 7, and (2) whatever could occur, must occur. Details: (2a)
From every point there emerges an edge of every possible color. For example, if P is in K, then
there are points Q,R,S such that P —red— @, P —green—> R, and P <—green— S. (2b) If the
color of an edge PQ in K, matches an edge of a tile A in 7, then there is a point R in K, such
that the colors of PQR match A. For example, if P —red— @ occurs in K, then (because of the
red-red-red tile in 7)) there is an R such that P —red— R —red— @, and (because of the red-red-
green tile in 7) there is some S in K, such that P —green—> S —red— @, some T in K,, such that
P —red— T <—green— @, some U in K,, such that P < —green— U —red— @, and some V in K,
such that P —red— V —green—> (@), corresponding to the four ways that a red edge can be matched
with a red edge in the red-red-green tile.

Theorem 1. One directed color: green. There are only two possible green-green-green tiles, called the
“3-cycle” and the “3-chain”.

(1) K, is tilable by the 3-cycle iff n = 3.

(2) K, is tilable by the 3-chain iff n is infinite.

(3) K, is tilable by the 3-cycle and 3-chain iff n =7 or 9 < n.

Theorem 2. Two undirected colors: red and blue.

(1) K, is tilable by red-red-red iff n > 3.

(2) No K, is tilable by red-red-red and blue-blue-blue.

(3) K, is tilable by red-red-blue iff n = 4.

(4) K, is tilable by red-red-blue and blue-blue-red iff n = 5.

Theorem 3. Three undirected colors: red, blue, and yellow.

(1) K, is tilable by red-red-blue, blue-blue-red, red-red-yellow, yellow-yellow-red, blue-blue-yellow,
yellow-yellow-blue, and red-blue-yellow iff n € {13,16}.

(2) K, is tilable by red-red-blue, blue-blue-red, red-red-yellow, yellow-yellow-red, blue-blue-yellow,
yellow-yellow-blue, red-red-red, blue-blue-blue, yellow-yellow-yellow (all tiles with exactly one or exactly
two colors) iff n is infinite.

Open Problem. Given k undirected colors, k > 3, and 7 consisting of all tiles involving exactly two
colors or exactly three colors, is there an n such that K, is tilable? K, is not tilable if n is larger than
a number r(k) that exists by Ramsey’s Theorem. YES, if k¥ = 3 by Theorem 3(1). YES, if k = 4,5
by S. Comer, using finite fields, in “Color schemes forbidding monochromatic triangles”, Congressus
Numerantium 1983, pp. 231-236. YES, for all sufficiently large n, by Trotter, Szemeredi, and Erdos,
except their proof was wrong, so the problem is still open for k > 6.

Theorem 4. Any finite number of directed and undirected colors. If every possible triangle involving
a particular color (called the “flexible color”) appears in T then K, is tilable for every infinite n.
Open Problem. Can the theorem be improved to conclude with “then K, is tilable for some n < w”?
(The Flexible Atom Conjecture: YES)



