Some problems about coloring the edges of a complete graph. Roger Maddux, Department of Mathematics, Iowa State University Start with a set \mathcal{T} of edge-colored triangles. For example, \mathcal{T} could be Every color is directed or not (do not use both a directed red and an undirected red). For example, —green—> is directed and —red— is undirected. Think of the triangles in \mathcal{T} as tiles. There is an unlimited supply of each type of tile. **Problem.** Given a (possibly infinite) number n, can K_n (the complete graph on n points) be "tiled" with edge-colored triangles from \mathcal{T} so that (1) for every three points in K_n , the tile they determine has colors that match one of the tiles in \mathcal{T} , and (2) whatever could occur, must occur. Details: (2a) From every point there emerges an edge of every possible color. For example, if P is in K_n then there are points Q, R, S such that P—red—Q, P—green—> R, and P <—green—S. (2b) If the color of an edge PQ in K_n matches an edge of a tile Δ in \mathcal{T} , then there is a point R in K_n such that the colors of PQR match Δ . For example, if P—red—Q occurs in K_n , then (because of the red-red-red-red tile in \mathcal{T}) there is an R such that P—red—R—red—Q, and (because of the red-red-green tile in \mathcal{T}) there is some S in K_n such that P—green—S —red—Q, some T in K_n such that P—red—T <—green—Q, some T in T0 such that T0 —red—T1 corresponding to the four ways that a red edge can be matched with a red edge in the red-red-green tile. **Theorem 1.** One directed color: green. There are only two possible green-green-green tiles, called the "3-cycle" and the "3-chain". - (1) K_n is tilable by the 3-cycle iff n=3. - (2) K_n is tilable by the 3-chain iff n is infinite. - (3) K_n is tilable by the 3-cycle and 3-chain iff n = 7 or $9 \le n$. **Theorem 2.** Two undirected colors: red and blue. - (1) K_n is tilable by red-red-red iff $n \geq 3$. - (2) No K_n is tilable by red-red and blue-blue. - (3) K_n is tilable by red-red-blue iff n = 4. - (4) K_n is tilable by red-red-blue and blue-blue-red iff n=5. **Theorem 3.** Three undirected colors: red, blue, and yellow. - (1) K_n is tilable by red-red-blue, blue-blue-red, red-red-yellow, yellow-yellow-red, blue-blue-yellow, yellow-yellow-blue, and red-blue-yellow iff $n \in \{13, 16\}$. - (2) K_n is tilable by red-red-blue, blue-blue-red, red-red-yellow, yellow-yellow-red, blue-blue-yellow, yellow-yellow-blue, red-red-red, blue-blue-blue, yellow-yellow-yellow (all tiles with exactly one or exactly two colors) iff n is infinite. **Open Problem.** Given k undirected colors, $k \geq 3$, and \mathcal{T} consisting of all tiles involving exactly two colors or exactly three colors, is there an n such that K_n is tilable? K_n is not tilable if n is larger than a number r(k) that exists by Ramsey's Theorem. YES, if k=3 by Theorem **3**(1). YES, if k=4,5 by S. Comer, using finite fields, in "Color schemes forbidding monochromatic triangles", *Congressus Numerantium* 1983, pp. 231–236. YES, for all sufficiently large n, by Trotter, Szemeredi, and Erdös, except their proof was wrong, so the problem is still open for $k \geq 6$. **Theorem 4.** Any finite number of directed and undirected colors. If every possible triangle involving a particular color (called the "flexible color") appears in T then K_n is tilable for every *infinite* n. **Open Problem.** Can the theorem be improved to conclude with "then K_n is tilable for some $n < \omega$ "? (The Flexible Atom Conjecture: YES)