1. • Find \(Aut(\mathbb{Z}_{12}) \).
 • Is \(\mathbb{Z}_3 \oplus \mathbb{Z}_9 \) isomorphic to \(\mathbb{Z}_{27} \)? Why?
 • Is \(\mathbb{Z}_3 \oplus \mathbb{Z}_5 \) isomorphic to \(\mathbb{Z}_{15} \)? Why?
 • Find all subgroups of order 4 in \(\mathbb{Z}_4 \oplus \mathbb{Z}_4 \). \[20 \text{ pt} \]

2. Show that \(U(8) \) is not isomorphic to \(U(10) \). \[8 \text{ pt} \]

3. Let \(G \) be a group. Prove that the mapping \(\alpha(g) = g^{-1} \) is an automorphism if and only if \(G \) is abelian. \[10 \text{ pt} \]

4. Suppose that \(G \) is a finite group of order \(n \) and \(m \) is relatively prime to \(n \). If \(g \in G \) and \(g^m = e \), prove that \(g = e \). \[10 \text{ pt} \]

5. Let \(H = \{ \epsilon, (12) \} \) be a subgroup of \(S_3 \).
 • List all the left cosets of \(H \) in \(S_3 \).
 • Find the orbits of 1 under \(H \).
 • Find the stabilizers of 2 in \(S_3 \).
 • Is \(H \) normal in \(S_3 \)? Please explain why. \[16 \text{ pt} \]

6. Let \(G = S_4 \). For every \(\sigma \in S_4 \), define
 \[
 sgn(\sigma) = \begin{cases}
 +1 & \text{if} \sigma \text{ is an even permutation;} \\
 -1 & \text{if} \sigma \text{ is an odd permutation.}
 \end{cases}
 \]
 (a) Prove that \(sgn \) is a homomorphism from \(S_4 \) to the multiplicative group \(\{+1, -1\} \).
 (b) What is the kernel?
 (c) Prove that \(A_4 \) is normal in \(S_4 \).
 (d) List elements of the quotient group \(S_4/A_4 \). \[20 \text{ pt} \]

7. Prove that any abelian group of order 45 has an element of order 15. \[10 \text{ pt} \]

8. How many abelian groups there are of order 15? \[6 \text{ pt} \]