1. Suppose that a finite group G is generated by two elements a and b (that is, every element of the group can be expressed as some product of a’s and b’s). Given that $a^3 = e = b^2$ and $ab = ba^2$.
 - Construct the Cayley table for the group.
 - Find the center $Z(G)$ of G and the centralizer $C(a)$ of a in G.

2. (a) List all elements of Z_{900} of order 10.
 (b) List all generators of $U(20)$.

3. Let $G = \{a + b\sqrt{2}\}$, where a and b are rational numbers not both 0. Prove that G is a group under ordinary multiplication.

4. Prove that a group of order 5 is cyclic.

5. Let $\alpha = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 1 & 5 & 4 & 6 & 3 \end{bmatrix}$, $\beta = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 6 & 1 & 2 & 3 & 5 & 4 \end{bmatrix}$
 - Find $|\alpha|$, $|\beta|$.
 - Write $\alpha\beta$ as a product of disjoint cycles.
 - Find $|\alpha\beta|$.
 - Is $\alpha\beta$ an even or odd permutation?