SELECTION HOMEWORK #3 SOLUTIONS

Section 13
1. For each \(x \in A \), write \(U_x \) for the open set such that \(x \in U_x \subset A \). Then
\[
\bigcup_{x \in A} U_x \subset A
\]
because \(U_x \subset A \). On the other hand
\[
A \subset \bigcup_{x \in A} U_x
\]
because for each \(x \in A \), we have \(x \in U_x \). It follows that \(\bigcup_{x \in A} U_x = A \), so \(A \) is a union of open sets, and hence \(A \) is open.

4. (a) It’s easy to check that \(\mathcal{T} \) is a topology. To see that \(\bigcup_{\alpha \in J} \mathcal{T}_\alpha \) need not be a topology, let \(X = \{a, b, c\} \) with
\[
\mathcal{T}_1 = \{\emptyset, \{a\}, X\}, \quad \mathcal{T}_2 = \{\emptyset, \{b\}, X\}.
\]
Then
\[
T_1 \cup T_2 = \{\emptyset, \{a\}, \{b\}, X\}
\]
is not a topology because \(\{a\} \cup \{b\} = \{a, b\} \) isn’t in \(T_1 \cup T_2 \).
(b) Let \(\mathcal{S} = \bigcup_{\alpha \in J} \mathcal{T}_\alpha \). Then \(\mathcal{S} \) is a subbasis for a topology \(\mathcal{T} \), and clearly \(\mathcal{S} \subset \mathcal{T} \). On the other hand, if \(\mathcal{T}' \) is any topology with \(\mathcal{S} \subset \mathcal{T}' \), then the construction of \(\mathcal{T} \) implies that \(\mathcal{T} \subset \mathcal{T}' \). Hence \(\mathcal{T} \) is the smallest topology containing all \(\mathcal{T}_\alpha \).

Since \(\bigcap_{\alpha \in J} \mathcal{T}_\alpha \) is a topology (by part (a)), it’s the smallest topology contained in all \(\mathcal{T}_\alpha \).

Section 16
7. Let \(X = \mathbb{R} - \{0\} \) and let \(Y \) be the set of positive real numbers, using the usual ordering.
Then \(Y \) is clearly convex, but \(Y \) is not an interval in \(X \) because there is no number \(b \) satisfying \(b \geq x \) for all \(x \in Y \). In addition \(Y \) is not a ray because it would have to have the form \(Y = (a, +\infty) \) with \(a \in X \), in which case \(a < y \) for all \(y \in Y \). But \(a \) can’t be positive (because \(a \in Y \)) and \(a \) can’t be negative because then \(a/2 \in (a, y) \) for all \(y \in Y \). Therefore, a convex set need not be an interval or a ray.