HOMEWORK #1 SOLUTIONS

Section 1.1
1. (b) \(A \cup (B \cap C) = \{1, 3, 5\} \).
 (d) \((A \cap B) \times C = \{(1,1), (1,8)\} \).
 (f) \(\emptyset \cap A = \emptyset \).

4. (b) If \(x \in A \cap B \), then \(x \in A \) and \(x \in B \), so \(x \notin A \setminus B \), so \(x \notin A \setminus (A \setminus B) \). If \(x \notin A \setminus B \) and \(x \in B \), and therefore \(x \in A \cap B \).
 (e) By part (b), if \(x \in A \cap B \), then \(x \notin A \setminus B \). Hence \(A \cap B \) and \(A \setminus B \) are disjoint.
 To show that \(A = (A \cap B) \cup (A \setminus B) \), we show first that \(A \subset (A \cap B) \cup (A \setminus B) \). To this end, let \(x \in A \). There are two cases: (i) if \(x \in B \), then \(x \in A \cap B \); (ii) if \(x \notin B \), then \(x \in A \setminus B \).

Section 1.2
3. (a) This is a bijection. If \(f(x_1) = f(x_2) \), then \(2x_1 - 1 = 2x_2 - 1 \), so \(x_1 = x_2 \), and therefore \(f \) is injective. If \(y \in \mathbb{R} \), then \(y = f((x+1)/2) \), so \(f \) is surjective.
 (b) This is an injection because if
 \[
 \frac{x^2 - 1}{x - 1} = \frac{y^2 - 1}{y - 1},
 \]
 then \(x + 1 = y + 1 \), so \(x = y \). It isn’t surjective because there is no \(x \) with \(f(x) = 2 \).
 (c) This is a bijection. If \(\sqrt{x} = \sqrt{y} \), then \(x = y \), so \(f \) is injective. For \(y \in \mathbb{R} \), \(y = f(y^3) \), so \(f \) is surjective.
 (d) This is neither injective nor surjective: \(f(1) = f(-1) \), and there is no \(x \in [-1, 1] \) such that \(f(x) = 9/4 \).

Section 1.3
2. (a) The statement \(P(1) \) is “\(1^2 + 1 \) is even”, which is true because \(1^2 + 1 = 2 \).
 Now suppose \(k^2 + k \) is even. Then \((k+1)^2 + (k+1) = k^2 + 2k + 1 + k + 1 = (k^2 + k) + 2(k+1) \).
 By the induction hypothesis, \(k^2 + k \) is even, and \(2k + 2 \) is clearly even, so \((k+1)^2 + (k+1) \) is a sum of two even numbers and therefore it’s even.