FIRST IN-CLASS EXAM
NO CALCULATORS! CLOSED BOOK! SHOW ALL WORK!

1. (31 points) Write the Fourier series for the function
 \[f(x) = x^2 + x, \quad -1 < x < 1. \]

2. (12 points each) (a) Sketch the function that the Fourier series of
 \[f(x) = \begin{cases}
 x^2 & 0 < x < \pi \\
 1 & x = 0 \\
 \sin x & -\pi < x < 0
\end{cases} \]
 converges to.
 (b) Sketch the function that the Fourier sine series of
 \[f(x) = x^2, \quad 0 < x < \pi \]
 converges to.

3. (20 points) Find the Fourier transform (complex Fourier integral coefficient) of the function
 \[f(x) = \begin{cases}
 e^{-x} & x > 0 \\
 0 & x \leq 0.
\end{cases} \]

4. (15 points) Given that
 \[|\sin x| = \frac{1}{\pi} - \frac{2}{\pi} \sum_{n=1}^{\infty} \frac{1}{4n^2 - 1} \cos 2nx, \]
 show that
 \[\frac{1}{2} = \frac{1}{3} + \frac{1}{15} + \frac{1}{35} + \ldots. \]

5. (10 points) The function \(f(x) = \ln(x + 1) \) for \(0 < x < \pi \) Use the following table
to give an arithmetic expression for \(\hat{a}_2 \), the numerical approximation to the second Fourier cosine coefficient of \(f \).

<table>
<thead>
<tr>
<th>(i)</th>
<th>(x_i)</th>
<th>(\cos x_i)</th>
<th>(\cos(2x_i))</th>
<th>(\cos(3x_i))</th>
<th>(f(x_i))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1 (\frac{\pi}{3})</td>
<td>.5</td>
<td>- .5</td>
<td>-1</td>
<td>.71647</td>
<td></td>
</tr>
<tr>
<td>2 (\frac{2\pi}{3})</td>
<td>-.5</td>
<td>.5</td>
<td>1</td>
<td>1.12959</td>
<td></td>
</tr>
<tr>
<td>3 (\pi)</td>
<td>-1</td>
<td>1</td>
<td>-1</td>
<td>1.42108</td>
<td></td>
</tr>
</tbody>
</table>