Math 307, Section C2
Professor Lieberman
March 6, 2001

SECOND IN-CLASS EXAM

Directions: To receive full credit, you must show all work. You may use a calculator to
do the arithmetic, but you must show all steps in the calculations.

1. (25 points) Find an orthonormal basis for
\[
\text{span} \left\{ \begin{bmatrix} 2 \\ 3 \\ 0 \\ 6 \end{bmatrix}, \begin{bmatrix} 4 \\ 4 \\ 2 \\ 13 \end{bmatrix} \right\}.
\]

2. (20 points) Consider two subspaces \(V \) and \(W \) of \(\mathbb{R}^n \). Let \(V + W \) be the set of all vectors in \(\mathbb{R}^n \) of the form \(\vec{v} + \vec{w} \), where \(\vec{v} \) is in \(V \) and \(\vec{w} \) is in \(W \). Is \(V + W \) necessarily a subspace of \(\mathbb{R}^n \)?

3. (30 points) Let \(A \) be the matrix
\[
A = \begin{bmatrix}
1 & -1 & -1 & 1 & 1 \\
-1 & 1 & 0 & -2 & 2 \\
1 & -1 & -2 & 0 & 3
\end{bmatrix}.
\]
Find a basis for the kernel of \(A \), a basis for the image of \(A \) and determine their dimensions.

4. (15 points) If \(A \) is an orthogonal \(n \times n \) matrix, is \(A^2 \) necessarily orthogonal? If the answer is yes, explain why. If the answer is no, give an example.

5. (10 points) Is there a \(3 \times 3 \) matrix \(B \) so that \(\text{im}(B) = \text{ker}(B) \)? Explain.
THIRD IN-CLASS EXAM

Directions: To receive full credit, you must show all work. (For problem 2(b), you do not need to calculate the eigenvalues.) You may use a calculator to do the arithmetic, but you must show all steps in the calculations.

1. (30 points) Compute the determinant of the matrix

\[
\begin{bmatrix}
1 & 1 & 1 & 1 \\
1 & 2 & 2 & 2 \\
1 & 1 & 3 & 3 \\
1 & 1 & 1 & 4
\end{bmatrix}
\]

2. (a) (15 points) Find all (complex) eigenvalues for the matrix

\[
\begin{bmatrix}
1 & -1 & 1 & -1 \\
1 & 1 & 1 & 1 \\
0 & 0 & 1 & 1 \\
0 & 0 & 1 & 1
\end{bmatrix}
\]

(b) (15 points) Given that the matrix

\[
A = \begin{bmatrix}
1 & -3 & 3 \\
3 & -5 & 3 \\
6 & -6 & 4
\end{bmatrix}
\]

has eigenvalues \(\lambda = -2 \) and \(\lambda = 4 \) (and no other eigenvalues), find a basis for the eigenspaces of \(A \). Is there an eigenbasis?

3. (a) (15 points) Determine the characteristic polynomial of

\[
A = \begin{bmatrix}
a & b & c \\
0 & 1 & 0 \\
0 & 0 & 1
\end{bmatrix}
\]

in terms of \(a \), \(b \), and \(c \).

(b) (5 points) Use your answer to part (a) to find a \(3 \times 3 \) matrix with characteristic polynomial \(\lambda^3 - 17\lambda^2 + 5\lambda - \pi \).

4. (10 points per part) An \(n \times n \) matrix \(A \) is called *skew-symmetric* if \(A^T = -A \).
 (a) Give an example of a nonzero \(2 \times 2 \) skew-symmetric matrix.
 (b) Show that a skew-symmetric \(3 \times 3 \) matrix \(A \) must have zero determinant. What does this say about the invertibility of \(A \)?