SOLUTIONS TO PRACTICE SECOND IN-CLASS EXAM
correction on problem 4 of the pencil and paper part

“Pencil & Paper” Part

1. \(y' = \sin x + x \cos x \)

2. \(y' = 2x \sec x + x^2 \sec x \tan x \)

3. \(y' = \frac{2x(1 - x) - (1 + x^2)}{(1 - x)^2} \)

4. \(y' = -\csc^2(x^2)2x \) (This was mistyped the first time.)

“Work-out” Part

1. Differentiation of the equation gives
\[\sqrt{1 + y} + x\frac{1}{2\sqrt{1+y}}y' + y'\sqrt{1+2x} + y\frac{1}{2\sqrt{1+2x}}2 = 2, \]
so
\[y' = \frac{2 - \sqrt{1+y} - \frac{y}{\sqrt{1+2x}}}{\frac{2}{2\sqrt{1+y}} + \sqrt{1+2x}}. \]

2. The function is \(f(x) = x^3 \) and \(a = 2 \). (Another acceptable answer is \(f(x) = (2 + x)^3 \) and \(a = 0 \).) Since \(f'(x) = 3x^2 \), the limit equals \(f'(2) = 12 \).

3. If the plane flies at an angle of \(\theta \) from the positive \(x \)-axis, then its velocity is \(\langle 600 \cos \theta, 600 \sin \theta \rangle \), and its velocity relative to the ground is \(\langle 600 \cos \theta, 600 \sin \theta \rangle + \langle 80 \cos \frac{7\pi}{4}, 80 \sin \frac{7\pi}{4} \rangle \).

This will be in the \(\mathbf{i} \) direction if the second component is zero:
\[600 \sin \theta + 80 \sin \frac{7\pi}{4} = 0. \]
It follows that \(\sin \theta = -2 \sin(\pi/4)/15 = \sqrt{2}/15 \), which gives \(\theta = .09442 \) radians.
4. Differentiation yields

\[f'(x) = (4x - 5)(2x^2 - 9x + 10) + (2x^2 - 5x + 3)(4x - 9), \]

so \(f'(2) = -1 \). An equation for the tangent line to the graph of \(f \) at the point \(x = 2 \) is

\[y - 0 = -1(x - 2) \]

because \(f(2) = 0 \).

5. The velocity is

\[s'(t) = \frac{1(t^2 + 9) - (t + 4)(2t)}{(t^2 + 9)^2} = \frac{-t^2 - 8t + 9}{(t^2 + 9)^2}. \]

The body is instantaneously at rest if \(s'(t) = 0 \) which gives \(-t^2 - 8t + 9 = 0\) so \(t = -9 \) or \(t = 1 \). It’s moving in the positive direction if \(s'(t) > 0 \) which means \(-9 < t < 1 \).

6. First, we use some algebra:

\[\frac{\tan 1000x}{x} = \frac{\sin 1000x}{1000x} \frac{1000}{\cos 1000x}. \]

Since the limit of each term exists, the limit of the product exists and

\[\lim_{x \to 0} \frac{\tan 1000x}{x} = \lim_{x \to 0} \frac{\sin 1000x}{1000x} \lim_{x \to 0} \frac{1000}{\cos 1000x} = 1000. \]