Small Ramsey Numbers

Bernard Lidický Florian Pfender

Iowa State University University of Colorado Denver

2017 MMMM Combinatorics
Graduate Students Workshop

April 28–30, 2017
University of Minnesota Duluth

Definition

$R(G_1, G_2, \ldots, G_k)$ is the smallest integer n such that any k-edge coloring of K_n contains a copy of G_i in color i for some $1 \leq i \leq k$.

\[R(K_3, K_3) > 5 \quad \text{and} \quad R(K_3, K_3) \leq 6 \]
Definition

$R(G_1, G_2, \ldots, G_k)$ is the smallest integer n such that any k-edge coloring of K_n contains a copy of G_i in color i for some $1 \leq i \leq k$.

\[R(K_3, K_3) > 5 \quad \text{and} \quad R(K_3, K_3) \leq 6 \]
Definition

$R(G_1, G_2, \ldots, G_k)$ is the smallest integer n such that any k-edge coloring of K_n contains a copy of G_i in color i for some $1 \leq i \leq k$.

\[R(K_3, K_3) > 5 \quad \text{and} \quad R(K_3, K_3) \leq 6 \]
Definition

\(R(G_1, G_2, \ldots, G_k) \) is the smallest integer \(n \) such that any \(k \)-edge coloring of \(K_n \) contains a copy of \(G_i \) in color \(i \) for some \(1 \leq i \leq k \).

\[R(K_3, K_3) > 5 \quad \text{and} \quad R(K_3, K_3) \leq 6 \]
Definition

$R(G_1, G_2, \ldots, G_k)$ is the smallest integer n such that any k-edge coloring of K_n contains a copy of G_i in color i for some $1 \leq i \leq k$.

$R(K_3, K_3) > 5$

$R(K_3, K_3) \leq 6$
Definition

\(R(G_1, G_2, \ldots, G_k) \) is the smallest integer \(n \) such that any \(k \)-edge coloring of \(K_n \) contains a copy of \(G_i \) in color \(i \) for some \(1 \leq i \leq k \).

\[R(K_3, K_3) > 5 \quad \text{and} \quad R(K_3, K_3) \leq 6 \]
Theorem (Ramsey 1930)

\[R(K_m, K_n) \text{ is finite.} \]
Theorem (Ramsey 1930)

\[R(K_m, K_n) \text{ is finite.} \]

\[R(G_1, \ldots, G_k) \text{ is finite} \]

Questions:

- study how \(R(G_1, \ldots, G_k) \) grows if \(G_1, \ldots, G_k \) grow (large)
- study \(R(G_1, \ldots, G_k) \) for fixed \(G_1, \ldots, G_k \) (small)
Theorem (Ramsey 1930)

\(R(K_m, K_n) \) is finite.

\(R(G_1, \ldots, G_k) \) is finite

Questions:

- study how \(R(G_1, \ldots, G_k) \) grows if \(G_1, \ldots, G_k \) grow (large)
- study \(R(G_1, \ldots, G_k) \) for fixed \(G_1, \ldots, G_k \) (small)

Radziszowski - *Small Ramsey Numbers*

Electronic Journal of Combinatorics - Survey
Seminal paper:
David P. Robbins Prize by AMS for Razborov in 2013
Seminal paper:
David P. Robbins Prize by AMS for Razborov in 2013

Example (Goodman, Razborov)
If the density of edges is at least $\rho > 0$, what is the minimum density of triangles?

- designed to attack extremal problems.
- works well if constraints as well as desired value can be computed by checking small subgraphs (or average over small subgraphs)
- the results are in limit (very large graphs)
Applications (Incomplete List)

<table>
<thead>
<tr>
<th>Authors</th>
<th>Year</th>
<th>Application/Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Razborov</td>
<td>2008</td>
<td>edge density vs. triangle density</td>
</tr>
<tr>
<td>Hladký, Král', Norin</td>
<td>2009</td>
<td>Bounds for the Caccetta-Haggvist conjecture</td>
</tr>
<tr>
<td>Razborov</td>
<td>2010</td>
<td>3-hypergraphs with forbidden 4-vertex configurations</td>
</tr>
<tr>
<td>Hatami, Hladký, Král', Norine, Razborov / Grzesik</td>
<td>2011</td>
<td>Erdős Pentagon problem</td>
</tr>
<tr>
<td>Hatami, Hladký, Král', Norin, Razborov</td>
<td>2012</td>
<td>Non-Three-Colourable Common Graphs Exist</td>
</tr>
<tr>
<td>Balogh, Hu, Lidický, Liu / Baber</td>
<td>2012</td>
<td>4-cycles in hypercubes</td>
</tr>
<tr>
<td>Reiher</td>
<td>2012</td>
<td>edge density vs. clique density</td>
</tr>
<tr>
<td>Das, Huang, Ma, Naves, Sudakov</td>
<td>2013</td>
<td>minimum number of k-cliques</td>
</tr>
<tr>
<td>Baber, Talbot</td>
<td>2013</td>
<td>A Solution to the 2/3 Conjecture</td>
</tr>
<tr>
<td>Falgas-Ravry, Vaughan</td>
<td>2013</td>
<td>Turán density of many 3-graphs</td>
</tr>
<tr>
<td>Cummings, Král', Pfender, Sperfeld, Treglown, Young</td>
<td>2013</td>
<td>Monochromatic triangles in 3-edge colored graphs</td>
</tr>
<tr>
<td>Kramer, Martin, Young</td>
<td>2013</td>
<td>Boolean lattice</td>
</tr>
<tr>
<td>Balogh, Hu, Lidický, Pikhurko, Udvari, Volec</td>
<td>2013</td>
<td>Monotone permutations</td>
</tr>
<tr>
<td>Norin, Zwols</td>
<td>2013</td>
<td>New bound on Zarankiewicz's conjecture</td>
</tr>
<tr>
<td>Huang, Linial, Naves, Peled, Sudakov</td>
<td>2014</td>
<td>3-local profiles of graphs</td>
</tr>
<tr>
<td>Balogh, Hu, Lidický, Pfender, Volec, Young</td>
<td>2014</td>
<td>Rainbow triangles in 3-edge colored graphs</td>
</tr>
<tr>
<td>Balogh, Hu, Lidický, Pfender</td>
<td>2014</td>
<td>Induced density of C_5</td>
</tr>
<tr>
<td>Goaoc, Hubard, de Verclos, Séréni, Volec</td>
<td>2014</td>
<td>Order type and density of convex subsets</td>
</tr>
<tr>
<td>Coregliano, Razborov</td>
<td>2015</td>
<td>Tournaments</td>
</tr>
</tbody>
</table>

Applications to graphs, oriented graphs, hypergraphs, hypercubes, permutations, crossing number of graphs, order types, geometry, ... Razborov: Flag Algebra: an Interim Report
Inspiration

Theorem (Cummings, Král, Pfender, Sperfeld, Treglown, Young)

In every 3-edge-colored complete graph on n vertices, there are at least $\frac{1}{25} \binom{n}{3} + o(n^3)$ monochromatic triangles.

\[
\begin{align*}
\triangle & \quad + \quad \triangle & \quad + \quad \triangle & \quad \geq \quad \frac{1}{25} + o(1)
\end{align*}
\]
THEOREM (Cummings, Kráľ, Pfender, Sperfeld, Treglown, Young)

In every 3-edge-colored complete graph on n vertices, there are at least $\frac{1}{25} \binom{n}{3} + o(n^3)$ monochromatic triangles.

\[
\begin{align*}
\binom{n}{3} + \binom{n}{3} + \binom{n}{3} & \geq \frac{1}{25}
\end{align*}
\]
INSPIRATION

THEOREM (Cummings, Král, Pfender, Sperfeld, Treglown, Young)

In every 3-edge-colored complete graph on n vertices, there are at least $\frac{1}{25} \binom{n}{3} + o(n^3)$ monochromatic triangles.

\[
\begin{align*}
\binom{n}{3} + \binom{n}{3} + \binom{n}{3} & \geq \frac{1}{25} \\
\end{align*}
\]

\[
\begin{align*}
\binom{n}{3} & \geq \frac{1}{25} \quad \text{subject to} \quad \binom{n}{3} = \binom{n}{3} = 0
\end{align*}
\]
THEOREM (Cummings, Král, Pfender, Sperfeld, Treglown, Young)

In every 3-edge-colored complete graph on n vertices, there are at least \(\frac{1}{25} \binom{n}{3} + o(n^3) \) monochromatic triangles.

\[
\geq \frac{1}{25}
\]

subject to

\[
= \quad = 0
\]
Inspiration

Theorem (Cummings, Král, Pfender, Sperfeld, Treglown, Young)

In every 3-edge-colored complete graph on n vertices, there are at least $\frac{1}{25} \binom{n}{3} + o(n^3)$ monochromatic triangles.

\[\geq \frac{1}{25} \text{ subject to } \sum = 0 \]
Theorem (Cummings, Král, Pfender, Sperfeld, Treglown, Young)

In every 3-edge-colored complete graph on \(n \) vertices, there are at least \(\frac{1}{25} \binom{n}{3} + o(n^3) \) monochromatic triangles.

\[
\geq \frac{1}{25}
\]

subject to

\[
\frac{n}{5} = \frac{n}{5} = 0
\]
What is number of non-edges in a blow-up?
What is number of non-edges in a blow-up?

\[
\sum_{i=1}^{5} \binom{|I_i|}{2} \geq \sum_{i=1}^{5} \binom{n/5}{2} \geq 5 \binom{n/5}{2} \approx \frac{1}{5} \binom{n}{2}
\]
What is number of non-edges in a blow-up?

\[\sum_{i=1}^{5} \binom{|I_i|}{2} \geq \sum_{i=1}^{5} \binom{n/5}{2} \geq 5 \binom{n/5}{2} \approx \frac{1}{5} \binom{n}{2} \]

Observation (Key Observation)

If a Ramsey graph G has k vertices, then the density of non-edges in any blow-up of G is at least $\frac{1}{k} + o(1)$.
Outline of idea

Observation (Key observation)

If a Ramsey graph G has k vertices, then the density of non-edges in any blow-up of G is at least $\frac{1}{k} + o(1)$.
Outline of idea

Observation (Key observation)

If a Ramsey graph G has k vertices, then the density of non-edges in any blow-up of G is at least $\frac{1}{k} + o(1)$.

- Let G be 2-edge-colored complete graphs with no monochromatic triangle.
- Consider all blow-ups B of graphs in G.
- $\forall B \in B$, density of non-edges in B is at least $\frac{1}{k} = \frac{1}{5}$.
Outline of Idea

Observation (Key Observation)

If a Ramsey graph G has k vertices, then the density of non-edges in any blow-up of G is at least $\frac{1}{k} + o(1)$.

- Let G be 2-edge-colored complete graphs with no monochromatic triangle.
- Consider all blow-ups \mathcal{B} of graphs in G.
- $\forall B \in \mathcal{B}$, density of non-edges in B is at least $\frac{1}{k} = \frac{1}{5}$.

Observation

If the density of non-edges ρ is $> \frac{1}{k+1}$ over all $B \in \mathcal{B}$, then a Ramsey graph has at most k vertices.
Outline of Idea

Observation (Key Observation)

If a Ramsey graph G has k vertices, then the density of non-edges in any blow-up of G is at least $\frac{1}{k} + o(1)$.

- Let G be 2-edge-colored complete graphs with no monochromatic triangle.
- Consider all blow-ups B of graphs in G.
- $\forall B \in B$, density of non-edges in B is at least $\frac{1}{k} = \frac{1}{5}$.

Observation

If the density of non-edges ρ is $> \frac{1}{k+1}$ over all $B \in B$, then a Ramsey graph has as most k vertices.

If one can prove $\rho > \frac{1}{6}$, then there is no Ramsey graph on 6 vertices.
Outline of idea

Observation (Key Observation)

If a Ramsey graph \(G \) has \(k \) vertices, then the density of non-edges in any blow-up of \(G \) is at least \(\frac{1}{k} + o(1) \).

- Let \(G \) be 2-edge-colored complete graphs with no monochromatic triangle.
- Consider all blow-ups \(B \) of graphs in \(G \)
- \(\forall B \in B \), density of non-edges in \(B \) is at least \(\frac{1}{k} = \frac{1}{5} \).

Observation

If the density of non-edges \(\rho \) is \(> \frac{1}{k+1} \) over all \(B \in B \), then a Ramsey graph has at most \(k \) vertices.

If one can prove \(\rho > \frac{1}{6} \), then there is no Ramsey graph on 6 vertices.

Notice that any lower bound on \(\rho \) in \(\left(\frac{1}{k+1}, \frac{1}{k} \right] \) gives that any Ramsey graph has at most \(k \) vertices.
Outline of Idea

Observation (Key Observation)

*If a Ramsey graph G has k vertices, then the density of non-edges in any blow-up of G is at least $\frac{1}{k} + o(1)$."

- Let G be 2-edge-colored complete graph with no monochromatic triangle.
- Consider all blow-ups B of graphs in G.
- $\forall B \in B$, density of non-edges in B is at least $\frac{1}{k} = \frac{1}{5}$.

Observation

*If the density of non-edges ρ is $\geq \frac{1}{k+1}$ over all $B \in B$, then a Ramsey graph has at most k vertices."

If one can prove $\rho > \frac{1}{6}$, then there is no Ramsey graph on 6 vertices.

Notice that any lower bound on ρ in $(\frac{1}{k+1}, \frac{1}{k}]$ gives that any Ramsey graph has at most k vertices.
How can we characterize blow-ups \mathcal{B} of graphs with no $\begin{array}{c} \text{I}_1 \\ \text{I}_2 \end{array}$, $\begin{array}{c} \text{I}_3 \\ \text{I}_4 \end{array}$?
Blow-ups in Flag Algebra

How can we characterize blow-ups \mathcal{B} of graphs with no $\begin{array}{c} \text{Forbidden subgraphs:} \\
\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\end{array}
\end{array}
\end{array}
\end{array}$?
How can we characterize blow-ups \mathcal{B} of graphs with no Δ, Δ?

Forbidden subgraphs:

\[\text{minimize} \quad \sum_{i=1}^{5} I_i \quad \text{subject to} \quad \sum_{i=1}^{5} I_i = 0 \]
Blow-ups in Flag Algebra

How can we characterize blow-ups \mathcal{B} of graphs with no forbidden subgraphs: $\begin{array}{c}
\text{Forbidden subgraphs:} \\
\begin{array}{c}
\text{minimize } \\
\text{subject to }
\end{array}
\end{array}$

Flag Algebra question! Easy to modify.
New upper bounds (so far)

<table>
<thead>
<tr>
<th>Problem</th>
<th>Lower</th>
<th>New upper</th>
<th>Old upper</th>
</tr>
</thead>
<tbody>
<tr>
<td>(R(K_4^-, K_8^-))</td>
<td>29</td>
<td>32</td>
<td>38</td>
</tr>
<tr>
<td>(R(K_4^-, K_9^-))</td>
<td>31</td>
<td>46</td>
<td>53</td>
</tr>
<tr>
<td>(R(K_4, K_7^-))</td>
<td>37</td>
<td>49</td>
<td>52</td>
</tr>
<tr>
<td>(R(K_5^-, K_6^-))</td>
<td>31</td>
<td>38</td>
<td>39</td>
</tr>
<tr>
<td>(R(K_5^-, K_7^-))</td>
<td>40</td>
<td>65</td>
<td>66</td>
</tr>
<tr>
<td>(R(K_5, K_6^-))</td>
<td>43</td>
<td>62</td>
<td>66</td>
</tr>
<tr>
<td>(R(K_5, K_7^-))</td>
<td>58</td>
<td>102</td>
<td>110</td>
</tr>
<tr>
<td>(R(K_6^-, K_7^-))</td>
<td>59</td>
<td>124</td>
<td>135</td>
</tr>
<tr>
<td>(R(K_7, K_8^-))</td>
<td>28</td>
<td>29</td>
<td>30</td>
</tr>
<tr>
<td>(R(K_8, K_4^-))</td>
<td>29</td>
<td>39</td>
<td>42</td>
</tr>
<tr>
<td>(R(K_8, C_5))</td>
<td>29</td>
<td>29</td>
<td>33</td>
</tr>
<tr>
<td>(R(K_9, C_5))</td>
<td>33</td>
<td>36</td>
<td>??</td>
</tr>
<tr>
<td>(R(K_9, C_6))</td>
<td>41</td>
<td>41</td>
<td>??</td>
</tr>
<tr>
<td>(R(K_9, C_7))</td>
<td>49</td>
<td>58</td>
<td>??</td>
</tr>
<tr>
<td>(R(K_{2,2,2}, K_{2,2,2}))</td>
<td>30</td>
<td>32</td>
<td>60?</td>
</tr>
<tr>
<td>Problem</td>
<td>Lower</td>
<td>New upper</td>
<td>Old upper</td>
</tr>
<tr>
<td>-------------------</td>
<td>-------</td>
<td>-----------</td>
<td>-----------</td>
</tr>
<tr>
<td>$R(K_{3,4}, K_{2,5})$</td>
<td>20</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>$R(K_{3,4}, K_{3,3})$</td>
<td>20</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>$R(K_{3,4}, K_{3,4})$</td>
<td>25</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>$R(K_{3,5}, K_{1,6})$</td>
<td>17</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>$R(K_{3,5}, K_{2,4})$</td>
<td>16</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>$R(K_{3,5}, K_{2,5})$</td>
<td>21</td>
<td>23</td>
<td></td>
</tr>
<tr>
<td>$R(K_{3,5}, K_{3,3})$</td>
<td></td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>$R(K_{3,5}, K_{3,4})$</td>
<td></td>
<td>29</td>
<td></td>
</tr>
<tr>
<td>$R(K_{3,5}, K_{3,5})$</td>
<td>30</td>
<td>33</td>
<td></td>
</tr>
<tr>
<td>$R(K_{3,5}, K_{3,5})$</td>
<td>30</td>
<td>38</td>
<td></td>
</tr>
<tr>
<td>$R(K_{4,4}, K_{4,4})$</td>
<td>30</td>
<td>49</td>
<td></td>
</tr>
<tr>
<td>$R(W_7, W_4)$</td>
<td></td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>$R(W_7, W_5)$</td>
<td></td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>$R(W_7, W_6)$</td>
<td></td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>$R(B_4, B_5)$</td>
<td>17</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>$R(B_3, B_6)$</td>
<td>17</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>$R(B_5, B_6)$</td>
<td>22</td>
<td>24</td>
<td>26</td>
</tr>
<tr>
<td>Problem</td>
<td>Lower</td>
<td>New upper</td>
<td>Old upper</td>
</tr>
<tr>
<td>------------------------------</td>
<td>-------</td>
<td>-----------</td>
<td>-----------</td>
</tr>
<tr>
<td>$R(W_5, K_6)$</td>
<td>33</td>
<td>36</td>
<td></td>
</tr>
<tr>
<td>$R(W_5, K_7)$</td>
<td>43</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>$R(Q_3, Q_3)$</td>
<td>13</td>
<td>13</td>
<td>14</td>
</tr>
<tr>
<td>$R(K_3, C_5, C_5)$</td>
<td>17</td>
<td>17</td>
<td>21?</td>
</tr>
<tr>
<td>$R(K_3, C_4, C_4, C_4)$</td>
<td>24</td>
<td>29</td>
<td>??</td>
</tr>
<tr>
<td>$R(K_4, C_4, C_4)$</td>
<td>52</td>
<td>71</td>
<td>72</td>
</tr>
<tr>
<td>$R(K_4^-, K_4^-, K_4^-)$</td>
<td>28</td>
<td>28</td>
<td>30</td>
</tr>
<tr>
<td>$R(K_3, K_4^-, K_4^-)$</td>
<td>21</td>
<td>23</td>
<td>27</td>
</tr>
<tr>
<td>$R(K_4, K_4^-, K_4^-)$</td>
<td>33</td>
<td>47</td>
<td>59</td>
</tr>
<tr>
<td>$R(K_4, K_4^-, K_4^-)$</td>
<td>55</td>
<td>104</td>
<td>113</td>
</tr>
<tr>
<td>$R(K_3, K_4, K_4^-)$</td>
<td>30</td>
<td>40</td>
<td>41</td>
</tr>
<tr>
<td>$R(K_4^-, K_5^-; 3)$</td>
<td>12</td>
<td>12</td>
<td>??</td>
</tr>
<tr>
<td>$R(K_4^-, K_5; 3)$</td>
<td>14</td>
<td>16</td>
<td>??</td>
</tr>
<tr>
<td>$R(K_4^-, K_4^-, K_4^-; 3)$</td>
<td>13</td>
<td>14</td>
<td>16</td>
</tr>
</tbody>
</table>
$R(K_4^-, K_5^-; 3) = 12$

- No lower bound better than 10 was known.
\[R(K_4^-, K_5^-; 3) = 12 \]

- No lower bound better than 10 was known.
- Flag Algebra computations on 8 vertices give
 \[R_3(K_4^-, K_5^-) \leq 12.000004 \]
\[R(K_4^-, K_5^-; 3) = 12 \]

- No lower bound better than 10 was known.
- Flag Algebra computations on 8 vertices give
 \[R_3(K_4^-, K_5^-) \leq 12.000004 \]
 ...and suggest that a Ramsey graph on 11 vertices can only have subgraphs on 8 vertices from a very short list.
\[R(K_4^-, K_5^-; 3) = 12 \]

- No lower bound better than 10 was known.
- Flag Algebra computations on 8 vertices give
 \[R_3(K_4^-, K_5^-) \leq 12.000004 \]
 ...and suggest that a Ramsey graph on 11 vertices can only have subgraphs on 8 vertices from a very short list.
- Generating all graphs from this short list is not difficult, and the (unique?) Ramsey graph can be found.
Example of Computation

Lemma

\[R(K_3, K_3) \leq 6 \]
Example of Computation

Lemma

\[R(K_3, K_3) \leq 6 \]

Our goal is to show:

\[
\begin{align*}
\frac{1}{6} & > \text{subject to} \quad \begin{array}{c}
\text{triangle} \\
\text{triangle} \\
\text{triangle} \\
\text{triangle} \\
\text{triangle} \\
\text{triangle}
\end{array}
\end{align*}
\]
Lemma

\[R(K_3, K_3) \leq 6 \]

Our goal is to show:

\[\frac{1}{6} \text{ subject to } \begin{array}{c}
\bullet \\
\bullet \\
\end{array} = 0 \]

We show perhaps the most complicated proof of the lemma!
Our goal is to show:

\(\frac{1}{6} \) subject to

\[
\begin{align*}
\begin{array}{c}
\text{red} \\
\text{blue}
\end{array}
\end{align*}
\]

\(= = = = = 0 \)
Our goal is to show:

$$\frac{1}{6} \text{ subject to } \begin{align*}
\text{triangle} &= \text{triangle} = \text{V} = \text{V} = 0
\end{align*}$$

Observe that \begin{align*}
\text{red line} \quad \text{and} \quad \text{blue line}
\end{align*} can be swapped.
Our goal is to show:

\[\frac{1}{6} > \text{subject to} \]

\[\begin{array}{ccccccc}
\text{\textbullet} & 1 \\
\end{array} \]

Observe that \[\begin{array}{ccccccc}
\text{\textbullet} & \text{\textbullet} & \text{\textbullet} \\
\end{array} \]

and \[\begin{array}{ccccccc}
\text{\textbullet} & \text{\textbullet} & \text{\textbullet} \\
\end{array} \]

can be swapped. Change to a color-blind setting. \[\begin{array}{ccccccc}
\text{\textbullet} & \text{\textbullet} & \text{\textbullet} \\
\end{array} \]

is a monochromatic triangle (red or blue).
Our goal is to show:

\[\frac{1}{6} > \quad \text{subject to} \quad \begin{array}{c}
\end{array} \]

Observe that these and can be swapped. Change to a color-blind setting. is a monochromatic triangle (red or blue).

Our new goal is to show:

\[\frac{1}{6} > \quad \text{subject to} \quad \begin{array}{c}
\end{array} \]
Our goal is to show:

\[\frac{1}{6} > \text{subject to} \left\{ \begin{array}{l}
\bigcirc
\end{array} \right. = 0 \]

Observe that \(\bigcirc \) and \(\bigcirc \) can be swapped. Change to a color-blind setting. \(\bigcirc \) is a monochromatic triangle (red or blue).

Our new goal is to show:

\[\frac{1}{6} > \text{subject to} \left\{ \begin{array}{l}
\bigcirc
\end{array} \right. = 0 \]

Color-blind setting will allow us to fit the computation on these slides.
Also important for bigger applications.
Our goal is to show:

\[\frac{1}{6} > \text{subject to } \begin{array}{c}
\bullet \quad \bullet \\
\bullet \quad \bullet \\
\end{array} = \begin{array}{c}
\text{ } \\
\text{ } \\
\end{array} = \begin{array}{c}
\text{ } \\
\text{ } \\
\end{array} = 0 \]
Our goal is to show:

\[
\frac{1}{6} > 0
\]

subject to

\[
\begin{align*}
\triangle &= \gamma = \square = 0 \\

\end{align*}
\]

Basic equations:

\[
\begin{align*}
\cdot &+ \cdot + \cdot + \cdot + \cdot + \cdot + \cdot = 1 \\

\end{align*}
\]

\[
= \frac{1}{6} \left(1 + 0 + 0 + 1 + 3 + 2 + 6 \right)
\]
We use flags with type σ_1 of size two

$$F = \begin{pmatrix} \mathcal{V}, & \mathcal{V}, & \mathcal{V} \end{pmatrix}^T.$$

For a positive semidefinite matrix M

$$0 \leq \left[F^T M F \right]_{\sigma_1} = \left[F^T \begin{pmatrix} 0.0744 & -0.0223 & -0.0520 \\ -0.0223 & 0.0238 & -0.0014 \\ -0.0520 & -0.0014 & 0.0536 \end{pmatrix} F \right]_{\sigma_1}$$

$$= -0.0116 \mathcal{V} - 0.3568 \mathcal{X} - 0.1784 \mathcal{X} - 0.0112 \mathcal{X}$$

$$+ 0.3216 \mathcal{V} + 0 \mathcal{X} + 0 \mathcal{X}.$$

$$\left[\begin{pmatrix} \mathcal{V} \times \mathcal{V} \end{pmatrix} \right]_{\sigma_1} = \left[\frac{1}{2} \mathcal{V} + \frac{1}{2} \mathcal{V} \right]_{\sigma_1} = \frac{1}{2} \left(\frac{8}{12} \mathcal{X} + \frac{4}{12} \mathcal{X} \right).$$
\[\frac{1}{6} \left(1 + 0 + 0 + 1 + 3 + 2 + 6 \right) \]

We sum the equations and obtain

\[0 \geq 0.0116 + 0.3568 + 0.1784 + 0.0112 \]

\[-0.3216 + 0 + 0 \]
\[
\frac{1}{6} \left(1 + 0 + 0 + 1 + 3 + 2 + 6 \right) = 0.1782 + 0.3568 + 0.1784 + 0.1778
\]

We sum the equations and obtain

\[
0 \geq 0.0116 + 0.3568 + 0.1784 + 0.0112
\]

\[-0.3216 + 0 + 0 \geq 0.1782 + 0.3568 + 0.1784 + 0.1778
\]

\[+ 0.1784 + 0.33 \geq 0.1782 + 0.3568 + 0.1784 + 0.1778\]
\[\frac{1}{6} \left(\begin{array}{cccccc} 1 & + & 0 & + & 0 & + 1 & + 3 & + 2 & + 6 \end{array} \right) \]

\[0 \geq 0.0116 + 0.3568 + 0.1784 + 0.0112 \]

\[-0.3216 + 0 + 0 \]

We sum the equations and obtain

\[\geq 0.1782 + 0.3568 + 0.1784 + 0.1778 \]

\[+ 0.1784 + 0.33 + \]

\[\geq 0.17 \left(\begin{array}{cccccc} + & + & + & + & + & + \end{array} \right) \]
\[
\sum = \frac{1}{6} \left(1 + 0 + 0 + 1 + 3 + 2 + 6 \right)
\]

\[
0 \geq 0.0116 + 0.3568 + 0.1784 + 0.0112
\]

\[
-0.3216 + 0 + 0
\]

We sum the equations and obtain

\[
\sum \geq 0.1782 + 0.3568 + 0.1784 + 0.1778
\]

\[
+ 0.1784 + 0.33 +
\]

\[
\geq 0.17 \left(+ + + + + + + \right)
\]

\[
> 0.17 > \frac{1}{6}.
\]
We proved

\[\begin{align*}
\bullet > \frac{1}{6} & \text{ subject to } \\
\bullet & \text{ } = 0
\end{align*} \]
We proved
\[
\begin{array}{c}
> \frac{1}{6} \\
\end{array}
\]
subject to
\[
\begin{array}{c}
= \\
= \\
= \\
= \\
= \\
= 0
\end{array}
\]
Hence Ramsey graph for \(K_3\) and \(K_3\) has less than 6 vertices.
And therefore \(R(K_3, K_3) \leq 6\).
We proved

\[\frac{1}{6} > \text{subject to } \begin{array}{c}
\text{triangle} = \text{triangle} = \text{V} = \text{V} = \text{V} = \text{V} = 0
\end{array} \]

Hence Ramsey graph for \(K_3 \) and \(K_3 \) has less than 6 vertices.
And therefore \(R(K_3, K_3) \leq 6 \).

Note that the matrix \(M \) was not unique or tight (easy rounding).
(bound \(\geq \frac{1}{5} \) is also obtainable)
We proved

\[\frac{1}{6} > \frac{1}{6} \text{ subject to } \begin{align*}
\begin{bmatrix}
1 & 1 & 1 \\
1 & 0 & 0 \\
1 & 0 & 0 \\
\end{bmatrix} &= \begin{bmatrix} 1 & 1 & 1 \\
0 & 1 & 1 \\
0 & 0 & 1 \\
\end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \\
0 & 0 & 1 \\
0 & 0 & 0 \\
\end{bmatrix} = 0
\end{align*} \]

Hence Ramsey graph for \(\triangle \) and \(\triangle \) has less than 6 vertices.
And therefore \(R(K_3, K_3) \leq 6 \).

Note that the matrix \(M \) was not unique or tight (easy rounding).
(bound \(\geq \frac{1}{5} \) is also obtainable)

Thank you for your attention!