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Abstract

For positive integers k and d such that 4 ≤ k < d and k 6= 5, we determine the maxi-
mum number of rainbow colored copies of C4 in a k-edge-coloring of the d-dimensional
hypercube Qd. Interestingly, the k-edge-colorings of Qd yielding the maximum num-
ber of rainbow copies of C4 also have the property that every copy of C4 which is not
rainbow is monochromatic.

1 Introduction

For a graph G, an edge-coloring ϕ : E(G) → {1, 2, . . .} of G is rainbow if no two edges
receive the same color. Throughout this note, we will denote the d-dimensional hypercube
by Qd. A convenient way to consider Qd is as a graph with vertices corresponding to binary
sequences of length d and edges as pairs of vertices with corresponding binary sequences of
Hamming distance 1.

Various problems concerning edge-colorings of hypercubes have been studied, see e.g. [1,
2, 3, 4]. In particular, Faudree, Gyárfás, Lesniak and Schelp [5] proved that there is a
d-edge-coloring of Qd such that every C4 is rainbow for d = 4 or d > 5.

Our main result determines the maximum number of rainbow copies of C4 in a k-edge-
coloring of Qd for any positive integers k and d such that 4 ≤ k < d and k 6= 5. Note that
when k = d, by [5], there is an edge-coloring of Qd using d colors where every C4 is rainbow.
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Theorem 1. Fix integers k and d such that 4 ≤ k < d and k 6= 5 and write d = ka+ b such
that a is a non-negative integer and b ∈ {0, 1, 2, . . . , k − 1}. Then the maximum number of
rainbow copies of C4 in a k-edge-coloring of Qd is
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)
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]
.

Interestingly, the k-edge-colorings of Qd that yield the maximum number of rainbow
copies of C4 have the additional property that every non-rainbow C4 is monochromatic.

2 Proof of Theorem 1

Proof. First we prove the upper bound. Assume that Qd is k-edge-colored such that the
number of rainbow copies of C4 is maximized. At each vertex v there are
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rainbow copies of C4 at v. Summing up (1) for each of the 2d vertices of Qd counts each C4

four times, which gives the desired upper bound.

Now we prove the lower bound. For each binary sequence coding a vertex of Qd, we
partition the first (k − b)a binary digits into (k − b) blocks, each of length a, and the last
b(a + 1) binary digits into b blocks, each of length a + 1. This yields k blocks of consecutive
binary digits each of length a or a + 1. Computing the sum of the terms in each block
modulo 2 yields a binary sequence of length k. Thus we have associated a binary sequence
of length k with each vertex of Qd. This gives a map, h, of the vertices of Qd to the vertices
of Qk. Recall that the edges of Qd are pairs of vertices such that their corresponding binary
sequences of length d have Hamming distance 1. If u, v ∈ V (Qd) have Hamming distance 1,
then h(u) and h(v) also have Hamming distance 1 since they differ exactly in one block.
Therefore, we can also consider h as a map from E(Qd) to E(Qk). By [5], there is an edge-
coloring, say ϕ, of the edges of Qk with k colors such that every C4 is rainbow. Now let us
color the edges of Qd with the color of their image under h in Qk i.e. the color of an edge e
in Qd is ϕ(h(e)).

Clearly, each vertex in Qd is incident to a edges of each of k − b colors and it is also
incident to a + 1 edges of each of the remaining b colors. To complete the proof, we need to
check that each pair of edges of different color incident to the same vertex is contained in a
rainbow C4. Among the four vertices in any C4 the maximum Hamming distance is 2. Thus
all differences among the length d binary sequences of the four vertices of the C4 occur in at
most 2 blocks. If all the differences occur in the same block, then the four edges of the C4

are mapped to the same edge in Qk, and thus, the C4 is monochromatic. If the differences
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occur in 2 distinct blocks, then the four edges of the C4 are mapped to a C4 in Qk and thus
receive different colors in the coloring of Qd.

3 Remarks

Theorem 1 omits the case k = 5. This is because there is no 5-edge-coloring of Q5 where
every copy of C4 is rainbow, which was proved in [5]. Using a computer, we showed that
the maximum number of rainbow copies of C4 in a 5-edge-coloring of Q5 is 73 (there are 80
copies of C4 in Q5). Of course, our blow-up method can be applied on a 5-edge-coloring of
Q5 with 73 rainbow copies of C4. However, the resulting bound does not match the upper
bound. Moreover, it is even worse than a bound for 4-edge-coloring for large d. Our attempt
to apply the flag algebra framework on 5-edge-colored hypercubes gave an upper bound that
matched the trivial upper bound. We suspect that the trivial upper bound might be the
correct order of magnitude for d → ∞. More precisely, if q5(d) is the maximum number of
rainbow copies of C4 in a 5-edge-coloring of Qd, then

lim
d→∞

q5(d)(
d
2

)
2d−2

=
4

5
.

A related question is to determine the number of colors needed to edge-color a graph
so that at least some fixed number of colors appear in each copy of a specified subgraph.
For graphs G and H and integer q ≤ |E(H)|, denote by f(G,H, q) the minimum number of
colors required to edge-color G such that the edge set of every copy of H in G receive at least
q colors. Using this notation, it was shown in [5] that f(Qd, C4, |E(C4)|) = f(Qd, C4, 4) = d,
for d = 4 or d > 5. Mubayi and Stading [6] proved that if k ≡ 0 (mod 4), then there are
positive constants, c1 and c2, depending only on k such that

c1d
k/4 < f(Qd, Ck, k) < c2d

k/4.

They also showed that f(Qd, C6, 6) = f(Qd,Q3, 12) = f(Qd,Q3, |E(Q3)|), and that for every
ε > 0, there exists d0 such that for d > d0

d ≤ f(Qd,Q3, 12) ≤ d1+ε.

It would be interesting to determine the value of f(Qd,Q`, |E(Q`)|) for ` ≥ 3. Combined
with a generalization of our blow-up technique it may allow us to determine the maximum
number of rainbow copies of Q` in a k-edge-coloring of Qd in general.
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