Rainbow copies of C_4 in edge-colored hypercubes

J. Balogh * M. Delcourt [†] B. Lidický [‡] C. Palmer [§]

October 19, 2013

Abstract

For positive integers k and d such that $4 \leq k < d$ and $k \neq 5$, we determine the maximum number of rainbow colored copies of C_4 in a k-edge-coloring of the d-dimensional hypercube \mathcal{Q}_d . Interestingly, the k-edge-colorings of \mathcal{Q}_d yielding the maximum number of rainbow copies of C_4 also have the property that every copy of C_4 which is not rainbow is monochromatic.

1 Introduction

For a graph G, an edge-coloring $\varphi : E(G) \to \{1, 2, \ldots\}$ of G is rainbow if no two edges receive the same color. Throughout this note, we will denote the *d*-dimensional hypercube by \mathcal{Q}_d . A convenient way to consider Q_d is as a graph with vertices corresponding to binary sequences of length d and edges as pairs of vertices with corresponding binary sequences of Hamming distance 1.

Various problems concerning edge-colorings of hypercubes have been studied, see e.g. [1, 2, 3, 4]. In particular, Faudree, Gyárfás, Lesniak and Schelp [5] proved that there is a d-edge-coloring of \mathcal{Q}_d such that every C_4 is rainbow for d = 4 or d > 5.

Our main result determines the maximum number of rainbow copies of C_4 in a k-edgecoloring of \mathcal{Q}_d for any positive integers k and d such that $4 \leq k < d$ and $k \neq 5$. Note that when k = d, by [5], there is an edge-coloring of \mathcal{Q}_d using d colors where every C_4 is rainbow.

^{*}Department of Mathematics, University of Illinois, Urbana, IL 61801, USA and Bolyai Institute, University of Szeged, Szeged, Hungary jobal@math.uiuc.edu. Research is partially supported NSF CAREER Grant DMS-0745185, Arnold O. Beckman Research Award (UIUC Campus Research Board 13039) and Marie Curie FP7-PEOPLE-2012-IIF 327763.

[†]Department of Mathematics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA delcour2@illinois.edu. Research supported by NSF Graduate Research Fellowship DGE 1144245 and DMS 0838434 EMSW21MCTP: Research Experience for Graduate Students.

[‡]Department of Mathematics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA lidicky@illinois.edu. Research is partially supported by NSF grant DMS-1266016.

[§]Department of Mathematical Sciences, University of Montana, Missoula, Montana 59801, USA cory.palmer@umontana.edu. Work partly done while visiting University of Illinois. Research supported by Hungarian National Science Fund (OTKA), grant NK 78439.

Theorem 1. Fix integers k and d such that $4 \le k < d$ and $k \ne 5$ and write d = ka + b such that a is a non-negative integer and $b \in \{0, 1, 2, ..., k-1\}$. Then the maximum number of rainbow copies of C_4 in a k-edge-coloring of \mathcal{Q}_d is

$$2^{d-2}\left[\binom{d}{2}-k\binom{a}{2}-ba\right].$$

Interestingly, the k-edge-colorings of \mathcal{Q}_d that yield the maximum number of rainbow copies of C_4 have the additional property that every non-rainbow C_4 is monochromatic.

2 Proof of Theorem 1

Proof. First we prove the upper bound. Assume that \mathcal{Q}_d is k-edge-colored such that the number of rainbow copies of C_4 is maximized. At each vertex v there are $\binom{d}{2}$ incident copies of C_4 . For a set of t edges of the same color incident to v, none of the $\binom{t}{2}$ pairs form a rainbow copy of C_4 . If there are t_i edges of color $i \in [k]$ incident with v, then there are at most

$$\binom{d}{2} - \sum_{i \in [k]} \binom{t_i}{2} \le \binom{d}{2} - (k-b)\binom{a}{2} - b\binom{a+1}{2} = \binom{d}{2} - k\binom{a}{2} - ba \tag{1}$$

rainbow copies of C_4 at v. Summing up (1) for each of the 2^d vertices of \mathcal{Q}_d counts each C_4 four times, which gives the desired upper bound.

Now we prove the lower bound. For each binary sequence coding a vertex of \mathcal{Q}_d , we partition the first (k - b)a binary digits into (k - b) blocks, each of length a, and the last b(a + 1) binary digits into b blocks, each of length a + 1. This yields k blocks of consecutive binary digits each of length a or a + 1. Computing the sum of the terms in each block modulo 2 yields a binary sequence of length k. Thus we have associated a binary sequence of length k with each vertex of \mathcal{Q}_d . This gives a map, h, of the vertices of \mathcal{Q}_d to the vertices of \mathcal{Q}_k . Recall that the edges of \mathcal{Q}_d are pairs of vertices such that their corresponding binary sequences of length d have Hamming distance 1. If $u, v \in V(\mathcal{Q}_d)$ have Hamming distance 1, then h(u) and h(v) also have Hamming distance 1 since they differ exactly in one block. Therefore, we can also consider h as a map from $E(\mathcal{Q}_d)$ to $E(\mathcal{Q}_k)$. By [5], there is an edgecoloring, say φ , of the edges of \mathcal{Q}_k with k colors such that every C_4 is rainbow. Now let us color the edges of \mathcal{Q}_d with the color of their image under h in \mathcal{Q}_k i.e. the color of an edge ein \mathcal{Q}_d is $\varphi(h(e))$.

Clearly, each vertex in \mathcal{Q}_d is incident to *a* edges of each of k - b colors and it is also incident to a + 1 edges of each of the remaining *b* colors. To complete the proof, we need to check that each pair of edges of different color incident to the same vertex is contained in a rainbow C_4 . Among the four vertices in any C_4 the maximum Hamming distance is 2. Thus all differences among the length *d* binary sequences of the four vertices of the C_4 occur in at most 2 blocks. If all the differences occur in the same block, then the four edges of the C_4 are mapped to the same edge in \mathcal{Q}_k , and thus, the C_4 is monochromatic. If the differences occur in 2 distinct blocks, then the four edges of the C_4 are mapped to a C_4 in \mathcal{Q}_k and thus receive different colors in the coloring of \mathcal{Q}_d .

3 Remarks

Theorem 1 omits the case k = 5. This is because there is no 5-edge-coloring of Q_5 where every copy of C_4 is rainbow, which was proved in [5]. Using a computer, we showed that the maximum number of rainbow copies of C_4 in a 5-edge-coloring of Q_5 is 73 (there are 80 copies of C_4 in Q_5). Of course, our blow-up method can be applied on a 5-edge-coloring of Q_5 with 73 rainbow copies of C_4 . However, the resulting bound does not match the upper bound. Moreover, it is even worse than a bound for 4-edge-coloring for large d. Our attempt to apply the flag algebra framework on 5-edge-colored hypercubes gave an upper bound that matched the trivial upper bound. We suspect that the trivial upper bound might be the correct order of magnitude for $d \to \infty$. More precisely, if $q_5(d)$ is the maximum number of rainbow copies of C_4 in a 5-edge-coloring of Q_d , then

$$\lim_{d \to \infty} \frac{q_5(d)}{\binom{d}{2} 2^{d-2}} = \frac{4}{5}.$$

A related question is to determine the number of colors needed to edge-color a graph so that at least some fixed number of colors appear in each copy of a specified subgraph. For graphs G and H and integer $q \leq |E(H)|$, denote by f(G, H, q) the minimum number of colors required to edge-color G such that the edge set of every copy of H in G receive at least q colors. Using this notation, it was shown in [5] that $f(\mathcal{Q}_d, C_4, |E(C_4)|) = f(\mathcal{Q}_d, C_4, 4) = d$, for d = 4 or d > 5. Mubayi and Stading [6] proved that if $k \equiv 0 \pmod{4}$, then there are positive constants, c_1 and c_2 , depending only on k such that

$$c_1 d^{k/4} < f(\mathcal{Q}_d, C_k, k) < c_2 d^{k/4}$$

They also showed that $f(\mathcal{Q}_d, C_6, 6) = f(\mathcal{Q}_d, \mathcal{Q}_3, 12) = f(\mathcal{Q}_d, \mathcal{Q}_3, |E(\mathcal{Q}_3)|)$, and that for every $\varepsilon > 0$, there exists d_0 such that for $d > d_0$

$$d \leq f(\mathcal{Q}_d, \mathcal{Q}_3, 12) \leq d^{1+\varepsilon}$$

It would be interesting to determine the value of $f(\mathcal{Q}_d, \mathcal{Q}_\ell, |E(\mathcal{Q}_\ell)|)$ for $\ell \geq 3$. Combined with a generalization of our blow-up technique it may allow us to determine the maximum number of rainbow copies of \mathcal{Q}_ℓ in a k-edge-coloring of \mathcal{Q}_d in general.

References

 N. ALON, A. KRECH, AND T. SZABÓ, Turán's theorem in the hypercube, SIAM J. Discrete Math., 21 (2007), pp. 66–72.

- [2] N. ALON, R. RADOIČIĆ, B. SUDAKOV, AND J. VONDRÁK, A Ramsey-type result for the hypercube, J. Graph Theory, 53 (2006), pp. 196–208.
- [3] M. AXENOVICH, H. HARBORTH, A. KEMNITZ, M. MÖLLER, AND I. SCHIERMEYER, *Rainbows in the hypercube*, Graphs Combin., 23 (2007), pp. 123–133.
- [4] M. CONDER, Hexagon-free subgraphs of hypercubes, J. Graph Theory, 17 (1993), pp. 477–479.
- [5] R. J. FAUDREE, A. GYÁRFÁS, L. LESNIAK, AND R. H. SCHELP, *Rainbow coloring the cube*, J. Graph Theory, 17 (1993), pp. 607–612.
- [6] D. MUBAYI AND R. STADING, *Coloring the cube with rainbow cycles*, Electronic Journal of Combinatorics. (accepted).