Recall \textit{k-factor} of a graph \(G \) is a spanning \(k \)-regular subgraph

A graph \(G \) is \textit{k-factorable} if its edges can be decomposed into \(k \)-factors.

Theorem 8.15 Every \(r \)-regular bipartite graph, \(r \geq 1 \), is 1-factorable.

1: Prove Theorem 8.15 by induction on \(r \).

Theorem 8.14 \(K_{2k} \) is 1-factorable.

2: Find 1-factorization of \(K_6 \). Use the following 1-factor \(F_1 \) to find the 1-factorization.

![Diagram of \(K_6 \) and \(F_1 \)]

3: Generalize the 1-factorization of \(K_6 \) to factorization of any \(K_{2k} \) for \(k \geq 3 \).

Theorem 8.16 A graph \(G \) is 2-factorable if and only if \(G \) is \(r \)-regular for some positive even integer \(r \).

4: Show that if \(G \) is 2-factorable, then \(G \) is \(r \)-regular, where \(r \) is some even integer.

Now we plan to prove the other direction of Theorem 8.16. Let \(G \) be a \(2k \)-regular graph on \(n \) vertices for some integer \(k \). We want to show \(G \) has a 2-factor and then use induction like in 8.15.

Notice that \(G \) is Eulerian so it has an Eulerian trail \(T \). Remember, edges do not repeat but vertices may repeat.

Let \(G \) have vertices \(v_1, \ldots, v_n \). Create a bipartite graph \(H \), whose vertex set \(U = \{u_1, \ldots, u_n\} \) and \(W = \{w_1, \ldots, w_n\} \) and \(u_i, w_j \) is an edge if \(v_i v_j \) appear in this order next to each other on the trail \(T \).

from G. Chartrand and P. Zhang. “A First Course in Graph Theory”
5: Suppose \(G = K_5 \). Find some Eulerian trail \(T \) in \(G \) and construct the corresponding graph \(H \).

6: Let \(F_H \) be a 1-factor in \(H \). What is correspondence of edges in \(F_H \) and edges in \(G \) and why? (Use \(K_5 \).)

This way we managed to find one 2-factor \(F \) in \(G \). Since \(G - F \) is \((2k - 2)\)-regular, we can use induction. Spanning subgraph of \(G \) is called a factor. A graph is factorable into factors \(F_1, F_2, \ldots, F_k \), if edges of the factors form a partition of edges of \(G \). If all factors are isomorphic to \(F \), then \(G \) is \(F \)-factorable.

7: Let \(3K_3 \) be a disjoint union of three triangles. Show that \(K_9 \) is \(3K_3 \)-factorable.

8: Show that \(K_{2k} \) can be factorized into \(k - 1 \) 2-factors and one 1-factor. (Hint: use that \(K_{2k} \) is 1-factorable.)

9: Let \(G \) be a connected graph on at least 4 vertices such that every edge of \(G \) belongs to a 1-factor in \(G \). Show that \(G \) is 2-connected.

10: Prove that if the bridges of a 3-regular graph \(G \) lie on a single path, then \(G \) has a 1-factor.

11: Is there a 2-factorization of \(K_7 \) in which no 2-factor is a Hamiltonian cycle?

12: Show that \(K_{2k} \) can be factorized into \(k - 1 \) Hamilton cycles and one 1-factor. (Hint: construction like where \(K_{2k} \) is 1-factorable.)

13: Find a multiset of cycles in Petersen’s graph such that every edge is in exactly two of the cycles.

14: Open Let \(G \) be a bridgeless cubic graph. Is there a multiset of cycles in \(G \) such that every edge is in exactly two of the cycles. (cycle double cover conjecture)