Chapter 5.4 Menger’s Theorem

Paths P_1 and P_2 are **internally disjoint** if their intersection contains only endpoints.

Theorem 5.16 (Menger’s Theorem) Let u and v be nonadjacent vertices in a graph G. The minimum number of vertices in a $u-v$ separating set equals the maximum number of internally disjoint $u-v$ paths in G.

Proof. Let the minimum separating set be U. Use induction on $|U| = k$. Then use induction on the number of vertices and edges.

1: Case 1: vertices u and v have a common neighbor $x \in U$.

2: Case 2: There exists vertex in U not adjacent to u and a vertex not adjacent to v.

3: Case 3: Every U has all vertices adjacent to u and none to v or vice versa.

Theorem 5.17 A nontrivial graph G is k-connected for some integer $k \geq 2$ if and only if for each pair u, v of distinct vertices of G there are at least k internally disjoint $u-v$ paths in G.

4: Prove theorem 5.17 for complete graphs.

5: Show \Leftarrow direction.

6: Show \Rightarrow direction if u and v are not adjacent.

7: Show \Rightarrow direction if u and v are adjacent.

8: Let G be a k-connected graph and let S be any set of k vertices. Show that if a graph H is obtained from G by adding a new vertex w and joining w to the vertices of S, then H is also k-connected.
Show that if \(G \) is a \(k \)-connected graph and \(u, v_1, v_2, \ldots, v_k \) are \(k + 1 \) distinct vertices of \(G \), then there exist internally disjoint \(u - v_i \) paths \((1 \leq i \leq k) \) in \(G \).

Theorem 5.20 If \(G \) is a \(k \)-connected graph, \(k \geq 2 \), then every \(k \) vertices of \(G \) lie on a common cycle of \(G \).

We prove Theorem 5.20 by growing a cycle. Let \(S = \{v_1, \ldots, v_k\} \). Since \(k \geq 2 \), there is a cycle containing \(v_1 \) and \(v_2 \). Let \(C \) be a cycle containing vertices \(\{v_1, \ldots, v_l\} \). We will use the previous question to extend the cycle.

10: Show that if \(C \) is a cycle of length \(l \) formed by vertices \(\{v_1, \ldots, v_l\} \), then there exists a cycle containing vertices \(\{v_1, \ldots, v_l, v_{l+1}\} \).

Solution: Consider internally disjoint paths from \(C \) to \(v_{l+1} \). Any two consecutive will make the cycle longer.

11: Show that if \(C \) is a cycle of length \(> l \) containing vertices \(\{v_1, \ldots, v_l\} \), then there exists a cycle containing vertices \(\{v_1, \ldots, v_l, v_{l+1}\} \).

Solution: Consider internally disjoint paths from \(l + 1 \) vertices of \(C \) to \(v_{l+1} \). Take the initial parts of the cycles until they first time hit \(C \). Since there are \(l + 1 \), one can use pigeonhole principle to show that two are in the same segment that has no internal vertices of \(v_1, \ldots, v_l \) and it can be used to add \(v_{l+1} \).

12: 5.33 Let \(G \) be a 5-connected graph and let \(u, v \) and \(w \) be three distinct vertices of \(G \). Prove that \(G \) contains two cycles \(C \) and \(C' \) that have only \(u \) and \(v \) in common but neither of which contains \(w \).

Solution: Use that there are 5 internally disjoint paths between \(u \) and \(v \) and \(w \) is in at most one of them.

Harary graph \(H_{r,n} \) is a graph on \(n \) vertices \(v_1, \ldots, v_n \) that form a cycle \(C \) defined as follows. If \(r = 2k \) is event, then \(H_{r,n} = C^k \) (recall that we take power of cycle). If \(r = 2k + 1 \) is odd and \(n = 2l \) is even, then \(H_{r,n} \) is obtained from \(C^k \) by adding edges \(v_i v_{i+l} \), where \(1 \leq i \leq l \). If \(r = 2k + 1 \) is odd and \(n = 2l \) is odd, then \(H_{r,n} \) is obtained from \(C^k \) by adding edges \(v_i v_{i+l+1} \), where \(1 \leq i \leq l \) and edge \(v_1 v_{l+1} \).

13: Draw \(H_{2,6} \), \(H_{3,8} \), \(H_{3,9} \).

14: Show that for any two integers \(r, n \) with \(2 \leq r < n \) holds \(\kappa(H_{r,n}) = r \).

15: Open Prove or disprove that if \(G \) is a 3-connected graph, then no longest cycle in \(G \) is induced.

Reading for next time - Chapter 5.4.