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Abstract. The positive semidefinite zero forcing number Z+(G) of a graph G was introduced in [4]. We establish1

a variety of properties of Z+(G): Any vertex of G can be in a minimum positive semidefinite zero forcing set (this2

is not true for standard zero forcing). The graph parameters tw(G) (tree-width), Z+(G), and Z(G) (standard zero3

forcing number) all satisfy the Graph Complement Conjecture (see [3]). Graphs having extreme values of the positive4

semidefinite zero forcing number are characterized. The effect of various graph operations on positive semidefinite5

zero forcing number and connections with other graph parameters are studied.6
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1. Introduction. Every graph discussed is simple (no loops or multiple edges), undirected,9

and has a finite nonempty vertex set. In a graph G where some vertices S are colored black and the10

remaining vertices are colored white, the positive semidefinite color change rule is: If W1, . . . ,Wk11

are the sets of vertices of the k components of G−S (note that it is possible that k = 1), w ∈Wi,12

u ∈ S, and w is the only white neighbor of u in the subgraph of G induced by Wi ∪S, then change13

the color of w to black; in this case, we say u forces w and write u → w. Given an initial set B14

of black vertices, the derived set of B is the set of black vertices that results from applying the15

positive semidefinite color change rule until no more changes are possible. A positive semidefinite16

zero forcing set is an initial set B of vertices such that the derived set of B is all the vertices of G.17

The positive semidefinite zero forcing number of a graph G, denoted Z+(G), is the minimum of |B|18

over all positive semidefinite zero forcing sets B ⊆ V (G). The positive semidefinite zero forcing19

number is a variant of the (standard) zero forcing number Z(G), which uses the same definition20

with a different color change rule: If u is black and w is the only white neighbor of u, then change21

the color of w to black. The (standard) zero forcing number was introduced in [1] as an upper22

bound for maximum nullity, and the positive semidefinite zero forcing number was introduced in23

[4] as an upper bound for positive semidefinite maximum nullity.24

Let Sn(R) denote the set of real symmetric n× n matrices. For A = [aij ] ∈ Sn(R), the graph25

of A, denoted G(A), is the graph with vertices {1, . . . , n} and edges {{i, j} : aij 6= 0 and i 6= j}.26
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The maximum positive semidefinite nullity of G is27

M+(G) = max{nullA : A ∈ Sn(R) is positive semidefinite and G(A) = G}28

and minimum positive semidefinite rank of G is29

mr+(G) = min{rankA : A ∈ Sn(R) is positive semidefinite and G(A) = G}.30

The (standard) maximum nullity M(G) and (standard) minimum rank mr(G) use the same defini-31

tions omitting the requirement of positive semidefiniteness. It is clear that mr+(G)+M+(G) = |G|.32

In [4] it was shown that for every graph33

M+(G) ≤ Z+(G).34

It was also shown there that35

OS(G) + Z+(G) = |G|36

where OS(G) is a graph parameter defined in [14], and in fact shown that the complement of an37

OS-set is a positive semidefinite zero forcing set and the complement of a positive semidefinite zero38

forcing set is an OS-set. The reader is referred to [14] for the definition of OS-set and OS(G).39

We establish a variety of properties of Z+(G). In Section 2 connections between zero forcing sets40

and OS-sets are applied to show that every vertex of G is in some minimum positive semidefinite41

zero forcing set (this is not true for standard zero forcing). It is also shown there that T(G) ≤ Z+(G)42

where T(G) is the tree cover number of G, and cut-vertex reduction formulas for TC(G) and Z+(G)43

are established. In Section 3 it is shown that the graph parameters tw(G) (tree-width), Z+(G),44

and Z(G) (standard zero forcing number) all satisfy the Graph Complement Conjecture (see [3]).45

Graphs having extreme values of the positive semidefinite zero forcing number are characterized46

in Section 4. The effect of various graph operations on positive semidefinite zero forcing number47

and connections with other graph parameters are studied in Section 5.48

There are a few more graph terms that we need to define. The subgraph G[W ] of G = (V,E)49

induced by W ⊆ V is the subgraph with vertex set W and edge set {{i, j} ∈ E : i, j ∈W}; G−W is50

used to denote G[V \W ]. The graph G−{v} is also denoted by G−v. The complement of a graph51

G = (V,E) is the graph G = (V,E), where E consists of all two element sets from V that are not in52

E. The union of Gi = (Vi, Ei) is
⋃h
i=1Gi = (

⋃h
i=1 Vi,

⋃h
i=1Ei). The intersection of Gi = (Vi, Ei)53

is
⋂h
i=1Gi = (

⋂h
i=1 Vi,

⋂h
i=1Ei) (provided the intersection of the vertices is nonempty). The degree54

of vertex v in graph G, degG v, is the number of neighbors of v. A graph is chordal if it has no55

induced cycle of length 4 or more; clearly any induced subgraph of a chordal graph is chordal.56

2. Tree cover number, positive semidefinite zero forcing number, and maximum57

positive semidefinite nullity. The tree cover number of a graph G, denoted T(G), is defined as58

the minimum number of vertex disjoint trees occurring as induced subgraphs of G that cover all59

of the vertices of G, and was introduced by Barioli, Fallat, Mitchell, and Narayan in [5]. In that60

paper the authors show that for any outerplanar graph G, M+(G) = T(G) and if G is a chordal61

graph, then T(G) ≤ M+(G). It is conjectured there that T(G) ≤ M+(G) for every graph.62
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2.1. Membership in a minimum positive semidefinite zero forcing set. The next63

theorem is an interesting consequence of the connection between OS-number and Z+.64

Theorem 2.1. If G is a graph and v ∈ V (G), then there exist minimum positive semidefinite65

zero forcing sets B1 and B2 such that v ∈ B1 and v /∈ B2.66

Proof. Let G be a graph and v ∈ V (G). By Corollary 2.17 in [19], there exist OS-sets S1 and67

S2 with |S1| = |S2| = OS(G), v /∈ S1 and v ∈ S2. Then by [4, Theorem 3.6] B1 = S1 and B1 = S168

are minimum positive semidefinite zero forcing sets, with v ∈ B1 and v /∈ B2.69

Note that the situation for positive semidefinite zero forcing as described by Theorem 2.1 is70

very different from (standard) zero forcing, where it is known that a graph can have a vertex that71

is not in any minimum zero forcing set. For example, a degree 2 vertex in a path Pn, n ≥ 3 cannot72

be in a minimum zero forcing set for Pn. But we do have the extension to positive semidefinite of73

the property that no vertex is in every minimum zero forcing set.74

Corollary 2.2. If G is a connected graph of order greater than one, then75 ⋂
B∈ZFS+(G)

B = ∅,76

where ZFS+(G) is the set of all minimum positive semidefinite zero forcing sets of G.77

2.2. Forcing trees. Tree cover number can be viewed as a generalization of path cover num-78

ber, i.e., the minimum number of vertex disjoint paths occurring as induced subgraphs of G that79

cover all of the vertices of G. It is well known that path cover number P(G) and maximum nullity80

M(G) are noncomparable in general, but P(G) ≤ Z(G) for every graph G. The proof uses paths of81

forces, and we extend this to trees of positive semidefinite forces, thus showing that T(G) ≤ Z+(G).82

Let G be a graph and B a positive semidefinite zero forcing set for G. Construct the derived set,83

listing the forces in the order in which they were performed. This list F is a chronological list of84

forces. The terminology in the next definition will be justified in Theorem 2.4.85

Definition 2.3. Given a graph G, positive semidefinite zero forcing set B, chronological list86

of forces F , and a vertex b ∈ B, define Vb to be the set of vertices w such that there is a sequence87

of forces b = v1 → v2 → · · · → vk = w in F (the empty sequence of forces is permitted, i.e.,88

b ∈ Vb). The forcing tree Tb is the induced subgraph Tb = G[Vb]. The forcing tree cover (for the89

chronological list of forces F) is T = {Tb | b ∈ B}. An optimal forcing tree cover is a forcing tree90

cover from a chronological list of forces of a minimum positive semidefinite zero forcing set.91

A graph with positive semidefinite zero forcing set with forces marked and the resulting forcing92

tree cover are shown in Figure 2.1.93

Theorem 2.4. Assume G is a graph, B is a positive semidefinite zero forcing set of G, F is94

a chronological list of forces of B, and b ∈ B. Then95

1. Tb is a tree.96

2. The forcing tree cover T = {Tb : b ∈ B} is a tree cover of G.97

3. T(G) ≤ Z+(G).98

Proof. The sets Vb of vertices forced by distinct b ∈ B are disjoint because each vertex of G is99

forced only once. If a graph H is not a tree, then Z+(H) > 1 (this follows from the result that H100
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Fig. 2.1: A graph with forces marked, and the resulting forcing tree cover

not a tree implies M+(H) > 1 [15]). So if Tb = G [Vb] is not a tree, then there must exist a vertex101

v ∈ Vb\ {b} such that either v ∈ B or v was forced through a sequence of forces from some element102

of B not equal to b. In either case, this contradicts the fact that the sets Vb of vertices forced by103

different elements of B are disjoint. Thus Tb is a tree.104

Since each vertex b ∈ B forces an induced subtree, the trees forced by distinct elements of B105

are disjoint, and B is a positive semidefinite zero forcing set, T = {Tb : b ∈ B} is a tree cover of106

G. Now suppose that B is a minimum positive semidefinite zero forcing set for G. Since T is a107

tree cover of G, T (G) ≤ |T | = |B| = Z+(G).108

2.3. Cut-vertex reduction. Cut-vertex reduction is a standard technique in the study of109

minimum rank. A vertex v of a connected graph G is a cut-vertex if G − v is disconnected.110

Suppose Gi, i = 1, . . . , h are graphs of order at least two, there is a vertex v such that for all111

i 6= j, Gi ∩Gj = {v}, and G =
⋃h
i=1Gi (if h ≥ 2, then clearly v is a cut-vertex of G). Then it is112

established in [16] that113

mr+(G) =
h∑
i=1

mr+(Gi).114

Because mr+(G) + M+(G) = |G|, this is equivalent to115

M+(G) =

(
h∑
i=1

M+(Gi)

)
− h+ 1. (2.1)116

It is shown in [19] that117

OS(G) =
h∑
i=1

OS(Gi).118

Because OS(G) + Z+(G) = |G| [4], this is equivalent to119

Z+(G) =

(
h∑
i=1

Z+(Gi)

)
− h+ 1. (2.2)120
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An analogous reduction formula is valid for tree cover number.121

Proposition 2.5. Suppose Gi, i = 1, . . . , h are graphs, there is a vertex v such that for all122

i 6= j, Gi ∩Gj = {v}, and G =
⋃h
i=1Gi. Then123

T(G) =

(
h∑
i=1

T(Gi)

)
− h+ 1. (2.3)124

Proof. For each Gi, let Ti be a tree cover of minimum cardinality. In each Ti, there exists some125

Ti such that v ∈ V (Ti). Define Tv =
⋃h
i=1 Ti. Then T =

⋃h
i=1(Ti \ {Ti}) ∪ {Tv} is a tree cover for126

G. Therefore T(G) ≤
(∑h

i=1 T(Gi)
)
− (h− 1).127

Let T be a minimum tree cover for G. Let Tv be the tree that includes v. For i = 1, . . . , h,128

define Tv,i = Tv ∩ Gi. For each T ∈ T such that v 6∈ V (T ), T is a subgraph of some Gi. Define129

Ti = {Tv,i} ∪ {T ∈ T : T is a subgraph of Gi}. Since Ti is a tree cover of Gi, T(Gi) ≤ |Ti|. Thus130

h∑
i=1

T(Gi) ≤
h∑
i=1

|Ti| = |T |+ h− 1 = T(G) + h− 1.131

We have the following immediate consequences of the cut-vertex reduction formulas (2.1),132

(2.2), and (2.3).133

Corollary 2.6. Suppose Gi, i = 1, . . . , h are graphs, there is a vertex v such that for all134

i 6= j, Gi ∩Gj = {v}, and G =
⋃h
i=1Gi.135

1. If M+(Gi) = Z+(Gi) for all i = 1, . . . , h, then M+(G) = Z+(G).136

2. If T(Gi) = Z+(Gi) for all i = 1, . . . , h, then T(G) = Z+(G).137

3. If M+(Gi) = T(Gi) for all i = 1, . . . , h, then M+(G) = T(G).138

Corollary 2.7. Suppose H is a graph, T is a tree, and H and T intersect in a single vertex.139

For G = H ∪ T ,140

1. M+(G) = M+(H).141

2. Z+(G) = Z+(H).142

3. T(G) = T(H).143

3. Graph Complement Conjecture. The graph complement conjecture or GCC (Conjec-144

ture 3.1 below) was stated at the 2006 American Institute of Mathematics workshop “Spectra of145

Families of Matrices described by Graphs, Digraphs, and Sign Patterns” [2].146

Conjecture 3.1 (GCC). [10] For any graph G,147

mr(G) + mr(G) ≤ |G|+ 2,148

or equivalently,149

M(G) + M(G) ≥ |G| − 2. (3.1)150
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151

The conjecture (3.1), which is a Nordhaus-Gaddum type problem, was generalized in [3] to a152

variety of graph parameters related to maximum nullity, including positive semidefinite maximum153

nullity. For a graph parameter β related to maximum nullity, the graph compliment conjecture for154

β, GCCβ , is155

β(G) + β(G) ≥ |G| − 2.156

With this notation, GCC can be denoted GCCM, and the graph compliment conjecture for positive157

semidefinite maximum nullity is denoted GCCM+ . In this section we establish that GCCtw, and158

hence GCCZ+ and GCCZ are true.159

A tree decomposition of a graph G is a pair (T,W), where T is a tree andW = {Wt : t ∈ V (T )}160

is a collection of subsets of V (G) with the following properties:161

1.
⋃
t∈V (T )Wt = V (G).162

2. Every edge of G has both ends in some Wt.163

3. If t1, t2, t3 ∈ V (T ) and t2 lies on a path from t1 to t3, then Wt1 ∩Wt3 ⊆Wt2 .164

The bags of the tree decomposition are the subsets Wt. The width of a tree decomposition is165

max{|Wt| − 1 : t ∈ V (T )}, and the tree-width tw(G) of G is the minimum width of any tree166

decomposition of G. Tree-width can be characterized in terms of the clique number of chordal167

graphs and in terms of partial k-trees. The greatest integer r such that Kr ⊆ G is the clique168

number ω(G). It follows from [11, Corollary 12.3.12] that169

tw(G) = min{ω(H)− 1 : V (H) = V (G), G ⊆ H, and H is chordal} (3.2)170

Note that in [11, Corollary 12.3.12], the minimum is taken over all chordal supergraphs; however,171

if H ⊇ G is chordal, then H[V (G)] ⊇ G, H[V (G)] is chordal, and ω(H[V (G)]) ≤ ω(H) and so172

we may take the minimum over only those chordal supergraphs with the same vertex set. For a173

positive integer k, a k-tree is constructed inductively by starting with a complete simple graph on174

k+ 1 vertices and connecting each new vertex to the vertices of an existing clique on k vertices. A175

partial k-tree is a subgraph of a k-tree. Then tw(G) is the least positive integer k such that G is a176

partial k-tree [9, F12, p. 111].177

A graph is co-chordal if its complement is chordal. A triangulation of a graph G is a chordal178

graph that is obtained from G by adding edges. A graph G is a split graph if there is a nonempty179

set S ⊂ V (G) such that S is an independent set in G and G − S is a clique. This definition of180

split graph differs slightly from the definition given in [17], where neither S 6= ∅ nor S 6= V (G)181

is required. However, the two definitions are equivalent for graphs of order at least two: In case182

S = V (G) is independent, then for any vertex v ∈ V (G), S′ = S \ {v} is independent and G− S′183

is an (order 1) clique. In case S = ∅ (so G is a clique), then for any vertex v ∈ V (G), S′ = {v} is184

independent and G− S′ is a clique.185

Theorem 3.2. Let G = (V,E) be a graph of order at least two. Let H be a chordal supergraph186

of G and F be a co-chordal subgraph of G with V (G) = V (H) = V (F ). Then for some clique of187

H and some clique of F , the union of their vertex sets is all of V .188

Proof. Since F ⊆ G ⊆ H and H is chordal, H is a triangulation of F . Let Γ ⊆ H be a minimal189

triangulation of F . Since F is co-chordal, it is 2K2 free (see, for example [17, Fact 2]), so by [17,190
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Corollary 7], Γ is a split graph. Let S be an independent set of vertices such that Γ−S is a clique.191

Since S is independent, Γ[S] = Γ[S] is also a clique. Since Γ ⊆ H, Γ − S ⊆ H and since F ⊆ Γ192

with the same vertex set, Γ ⊆ F and so Γ[S] ⊆ F . Finally, it is obvious that (V \ S) ∪ S = V .193

Theorem 3.3. GCCtw is true, i.e., tw(G) + tw(G) ≥ |G| − 2.194

Proof. Let G be a graph. By (3.2), we can choose chordal graphs H ⊇ G and H ′ ⊇ G such195

that ω(H) = tw(G) + 1, ω(H ′) = tw(G) + 1, and V (G) = V (H) = V (H ′). Observe that Theorem196

3.2 can be applied with H as H and H ′ as F in the theorem. So there exist cliques Kr ⊆ H and197

Kr′ ⊆ H ′ such that V (G) = V (Kr) ∪ V (Kr′). Therefore,198

|G| = |V (Kr) ∪ V (Kr′)| ≤ |Kr|+ |Kr′ | ≤ ω(H) + ω(H ′) = tw(G) + tw(G) + 2.199

Since for every graph G, tw(G) ≤ Z+(G) ≤ Z(G), we have the following corollary.200

Corollary 3.4. GCCZ+ and GCCZ are true, i.e.,201

Z+(G) + Z+(G) ≥ |G| − 2 and Z(G) + Z(G) ≥ |G| − 2.202

203

Note that GCCZ+ also follows from [18, Proposition 9].204

4. Graphs with extreme positive semidefinite zero forcing number. In this section205

we show that for graphs having very low or very high maximum positive semidefinite nullity or206

positive semidefinite zero forcing number, these two parameters are equal. Since characterizations207

of graphs having very low or very high maximum positive semidefinite nullity are known, these208

extend to graphs having very low or very high positive semidefinite zero forcing number.209

It is well known that M+(G) = 1 if and only if G is a tree if and only if Z+(G) = 1 (the first210

equivalence is established in [15], and the latter follows from M+(G) ≤ Z+(G) and the fact that any211

one vertex is a positive semidefinite zero forcing set for a tree). Graphs that have M+(G) = 2 are212

characterized in [15] (note that here a graph is required to be simple whereas in [15] multigraphs213

are considered).214

A connected graph is nonseparable if it does not have a cut-vertex. A block of a graph is a215

maximal nonseparable subgraph.216

Theorem 4.1. Let G be a graph. The following are equivalent.217

1. Z+(G) = 2,218

2. M+(G) = 2,219

3. Either220

(a) G is the disjoint union of two trees, or221

(b) G is connected, exactly one block of G has a cycle, and G does not have a K4 or T3222

minor.223

Proof. (2)⇔ (3): This follows from Theorems 4.3 and 2.2 in [15] and the fact that M+(G) = 1224

if and only if G is a tree.225

(1) ⇒ (2) because M+(G) ≤ Z+(G) and M+(G) = 1⇔ Z+(G) = 1.226
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(3) ⇒ (1): By hypothesis, G has no K4 minor, so tw(G) ≤ 2 (see [9, F31, p. 112]). It is shown227

in [12] that if tw(G) ≤ 2, then Z+(G) = M+(G). (Note that [12] defines tree-width in terms of228

partial k-trees, but as noted in Section 3, that definition is equivalent to the standard definition229

used here.)230

Corollary 4.2. If Z+(G) ≤ 3, then Z+(G) = M+(G).231

Proof. If Z+(G) = 3, then M+(G) ≤ 3, but M+(G) ≤ 2 would imply Z+(G) ≤ 2 by Theorem232

4.1 and the fact that M+(G) = 1⇔ Z+(G) = 1.233

Observe that Z+(V8) = 4 but M+(V8) = 3, so for Z+(G) ≥ 4 there is no result analogous to234

Corollary 4.2.235

Theorem 4.4 below, which characterizes high positive semidefinite zero forcing number, follows236

from the characterization of graphs having mr+(G) ≤ 2 in [7], using the parameter mz+ and the237

next proposition. Define mz+(G) = |G| − Z+(G). Since M+(G) ≤ Z+(G), mz+(G) ≤ mr+(G).238

The proof of Proposition 4.3 below is the same as the proof of Proposition 4.4 in [1].239

Proposition 4.3. If H is an induced subgraph of G, then mz+(H) ≤ mz+(G).240

Theorem 4.4. Let G be a graph. The following are equivalent.241

1. Z+(G) ≥ |G| − 2,242

2. M+(G) ≥ |G| − 2,243

3. G has no induced P4,K1,3, P3∪̇K2, 3K2244

Proof. (1) ⇒ (3) by Proposition 4.3, because mz+(H) = 3 for H = P4,K1,3, P3∪̇K2, or 3K2.245

(3) ⇒ (2) by Theorem 8 in [7]. (2) ⇒ (1) since M+(G) ≤ Z+(G).246

It is clear that M+(G) = |G| if and only if G has no edges, and the same is true for Z+(G).247

Similarly, M+(G) = |G| − 1⇔ G = Kr ∪ sK1 ⇔ Z+(G) = |G| − 1. The next corollary is analogous248

to Corollary 4.2.249

Corollary 4.5. If M+(G) ≥ |G| − 3, then M+(G) = Z+(G).250

5. Effects of graph operations on Z+.251

We examine the effect of various graph operations, including vertex deletion, edge deletion,252

edge subdivision, and edge contraction on positive semidefinite zero forcing number.253

5.1. Vertex deletion. The effect of vertex deletion (and edge deletion) on the (standard)254

zero forcing number was established in [13], where this was described using the language of spreads,255

i.e., the difference between the parameter evaluated on G and on G with a vertex or edge deleted.256

In this section we examine the effect of vertex deletion on positive semidefinite zero forcing number.257

Definition 5.1. Let G be a graph and v be a vertex in G.258

1. The positive semidefinite rank spread of v is r+v (G) = mr+(G)−mr+(G− v).259

2. The positive semidefinite null spread of v is n+
v (G) = M+(G)−M+(G− v).260

3. The positive semidefinite zero spread of v is z+
v (G) = Z+(G)− Z+(G− v).261
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Observation 5.2. For any graph G and vertex v,262

1. 0 ≤ r+v (G).263

2. n+
v (G) ≤ 1.264

3. r+v (G) + n+
v (G) = 1.265

The proof of the next proposition is the same as part of the proof of Theorem 2.3 in [13].266

Proposition 5.3. Let G be a graph and v be a vertex in G. Then Z+(G − v) ≥ Z+(G) − 1,267

so z+
v (G) ≤ 1.268

However, there is no upper bound for r+v (G) and no lower bound for n+
v (G) and z+

v (G) as269

exhibited in the following example.270

Example 5.4. The complete bipartite graph K1,s with s ≥ 2 has mr+(K1,s) = s and271

M+(K1,s) = 1 = Z+(K1,s). However if v is the cut-vertex, then K1,s − v has no edges and272

thus mr+(K1,s − v) = 0 and M+(K1,s − v) = s = Z+(K1,s − v). Thus r+v (K1,s) = s and273

n+
v (K1,s) = 1− s = z+

v (K1,s).274

As is the case with (standard) zero forcing number and maximum nullity [13], the parameters275

n+
v (G) and z+

v (G) are not comparable.276

Example 5.5. The graph V8 (also known as the Möbius ladder on 8 vertices) shown in277

Figure 5.1a has M+(G) = 3 and Z+(G) = 4 [19, 4]. Since {1, 2, 3} is a positive semidefinite278

zero forcing set for V8 − 8, Z+(V8 − 8) ≤ 3. Then by Corollary 4.2, M+(V8 − 8) = Z+(V8 − 8),279

so n+
8 (V8) < z+

8 (V8). (It is not difficult to find a matrix A ∈ S+(V8 − 8) with rankA = 4, so280

M+(V8 − 8) ≥ 3, M+(V8 − 8) = Z+(V8 − 8) = 3, and n+
8 (V8) = 0 and z+

8 (V8) = 1.)281

1 2

3

4

56

7

8

(a) V8

1 2

3

4

56

7

8

9

(b) G9

Fig. 5.1: The graphs V8 and G9

Example 5.6. The graph G9 in Figure 5.1b has a positive semidefinite zero forcing set282
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{3, 4, 7, 8} so Z+(G9) ≤ 4. Since283

B =


1 1 0 0 1 0 0 1 0
0 1 2 0 −1 2 0 −1 0
0 0 1 1 −1 1 1 2 1
0 0 1 1 3 −5 0 0 −2
0 0 0 −1 1 −4 1 0 −1

284

is an orthogonal representation of G9 in R5 (i.e., BTB ∈ S+(G9)), M+(G9) ≥ 4. Thus Z+(G9) =285

M+(G9) = 4. Since G9 − 9 = V8, z+
9 (G9) < n+

9 (G9) (in fact, z+
9 (G9) = 0 and n+

9 (G9) = 1).286

As in [13], we have the following observation.287

Observation 5.7. Let G be a graph such that M+(G) = Z+(G) and let v be a vertex of G.288

1. n+
v (G) ≥ z+

v (G).289

2. If z+
v (G) = 1, then n+

v (G) = 1.290

In the case of standard maximum nullity and zero forcing number, M(G) = Z(G) and nv(G) =291

−1 imply zv(G) = −1. However, since there are no lower bounds on z+
v (G) and n+

v (G), we do not292

have any bound based on n+
v (G) = −1, as the next example shows.293

Example 5.8. Let H be the graph obtained from G9 in Example 5.6 by appending two leaves294

to vertex 9. Then by cut-vertex reduction (2.1) and (2.2), M+(H) = 4 + 1 + 1 − 3 + 1 = Z+(G).295

Since H − 9 = V8∪̇2K1, M+(G) = 5 and Z+(G) = 6. Thus n+
9 (H) = −1 and z+

9 (H) = −2.296

A tree cover T of G contains a vertex v as a singleton if {v} (with no other vertices and no297

edges) is one of the trees in T . The proof of the next proposition is the same as the proof of298

Theorem 2.7 in [13].299

Proposition 5.9. Let G be a graph and v ∈ V (G). Then there exists an optimal forcing tree300

cover of G that contains v as a singleton if and only if z+
v (G) = 1.301

Remark 5.10. For the (standard) zero forcing number Z, we know that if G is a graph,302

v ∈ V (G), B is a minimum zero forcing set, and v ∈ B, then zv(G) ≥ 0. However, this is not the303

case for z+
v (G), because for any vertex v, there is a minimum positive semidefinite zero forcing set304

containing v by Theorem 2.1, yet there are vertices that have negative spread (such as in Example305

5.4).306

For a graph G, the neighborhood of v ∈ V (G) is NG(v) = {w ∈ V (G) : w is adjacent to v}.307

Vertices v and w of G are called duplicate vertices if NG(v) ∪ {v} = NG(w) ∪ {w}. Observe that308

duplicate vertices are necessarily adjacent. It was shown in [8] that if v is a duplicate vertex in a309

connected graph G of order at least three, then mr+(G−v) = mr+(G), so M+(G−v) = M+(G)−1.310

Proposition 5.11. If v and w are duplicate vertices in a connected graph G with |G| ≥ 3,311

then Z+(G− v) = Z+(G)− 1, or equivalently, z+
v (G) = 1.312

Proof. Choose a minimum positive semidefinite zero forcing set B that contains v. We show313

that B−{v} is a positive semidefinite zero forcing set for G− v. Proposition 5.3 then implies that314

B − {v} is a minimum positive semidefinite zero forcing set for G− v.315

Observe that in G, unless v forces w, v cannot perform a force until w is black. If v does not316
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force w in G, then either w ∈ B or there is a u ∈ NG(w) such that u→ w. In the latter case, u also317

forces w in G− v starting with black vertices B − {v}. Then in G− v, w can perform any forces318

that v had performed in G. So if v does not force w in G, then B − {v} is a positive semidefinite319

zero forcing set for G− v.320

So assume v forces w, then at the stage at which v → w, all vertices in NG(v) − {w} are321

black. So in G − v, B − {v} can still force all the vertices in NG−v(w). Since |G| ≥ 3 and G is322

connected, NG−v(w) 6= ∅, and any u ∈ NG−v(w) can force w (since w is an isolated vertex after323

all the currently black vertices are deleted from G − v). As before, all remaining forces can then324

be performed. Therefore B − {v} is a positive semidefinite zero forcing set.325

5.2. Edge deletion. If e is an edge of G, then G − e is the graph obtained from G by326

deleting e. In this section we examine the effect of edge deletion on positive semidefinite zero327

forcing number, using spread terminology.328

Definition 5.12. Let G be a graph and e be an edge in G.329

1. The positive semidefinite rank edge spread of e is r+e = mr+(G)−mr+(G− e).330

2. The positive semidefinite null edge spread of e is n+
e (G) = M+(G)−M+(G− e).331

3. The positive semidefinite zero edge spread of e is z+
e (G) = Z+(G)− Z+(G− e).332

Observation 5.13. For any graph G and edge e of G, r+e (G) + n+
e (G) = 0.333

Proposition 5.14. Let G be a graph and e = {i, j} be an edge in G. Then334

1. −1 ≤ r+e (G) ≤ 1,335

2. −1 ≤ n+
e (G) ≤ 1,336

3. −1 ≤ z+
e (G) ≤ 1.337

Proof. Nylen [20] established that the (standard) rank edge spread is between −1 and 1, and338

the same proof establishes that r+e (G) ≤ 1. For the other inequality in part (1), choose a matrix339

A ∈ S+(G) having rankA = mr+(G), and let ek denote the kth standard basis vector in Rn. Define340

A′ = A+ (ei− aijej)(ei− aijej)T . Then A′ ∈ S+(G− e) and rankA′ ≤ rankA+ 1 = mr+(G) + 1,341

so r+e (G) ≥ −1. Part (2) follows from part (1) and Observation 5.13. Part (3) can be proven by the342

same method used to prove Theorem 2.17 in [13] (although Theorem 2.1 could be used to simplify343

the proof).344

As is the case with (standard) zero forcing number and maximum nullity [13], the parameters345

n+
e (G) and z+

e (G) are not comparable.346

Example 5.15. The graph V8 has M+(G) = 3 and Z+(G) = 4 [19, 4]. Consider the edge347

e = {1, 8}. Since {1, 2, 3} is a positive semidefinite zero forcing set for V8 − e, Z+(V8 − e) ≤ 3.348

Then by Corollary 4.2, M+(V8 − 8) = Z+(V8 − 8), so n+
8 (V8) < z+

8 (V8).349

Example 5.16. In Example 5.6 it was shown that the graph G9 has Z+(G9) = M+(G9) = 4.350

Let e1 = {3, 9}, e2 = {5, 9}, e3 = {6, 9}, e4 = {8, 9}. Define H0 = G9 and Hk = G9 − {e1, . . . , ek}351

11



for k = 1, . . . , 4. Note that H4 = V8∪̇K1, so Z+(H4) = 5 and M+(H4) = 4. Since352

−1 = Z+(H0)− Z+(H4) = z+
e1(H0) + z+

e2(H1) + z+
e3(H2) + z+

e4(H3), and353

0 = M+(H0)−M+(H4) = n+
e1(H0) + n+

e2(H1) + n+
e3(H2) + n+

e4(H3),354

necessarily there exists a k ∈ {1, 2, 3, 4} such that z+
ek

(Hk−1) < n+
ek

(Hk−1).355

Observation 5.17. Let G be a graph such that M+(G) = Z+(G) and let e be an edge of G.356

1. n+
e (G) ≥ z+

e (G).357

2. If z+
e (G) = 1, then n+

e (G) = 1.358

3. If n+
e (G) = −1, then z+

e (G) = −1.359

The proof of the next proposition is the same as the proof of Theorem 2.21 in [13].360

Proposition 5.18. Let G be a graph and e ∈ E(G). If z+
e (G) = −1, then for every optimal361

forcing tree cover of G, e is an edge in some forcing tree. Equivalently, if there is an optimal362

forcing tree cover of G such that e is not an edge in any tree, then z+
e (G) ≥ 0.363

Question 5.19. Is the converse of Proposition 5.18 true? That is, if G is a graph, e is an364

edge of G, and z+
e (G) ≥ 0, must there exist an optimal forcing tree cover T of G such that e is not365

an edge of any tree in T ?366

Proposition 5.20. Let G be a graph and e = {v, w} be an edge of G. If z+
e (G) = 1, then367

there exists an optimal forcing tree cover T , such that e is not an edge of any tree in T .368

Proof. Let G be a graph and e = {v, w} be an edge of G with z+
e (G) = 1. Since z+

e (G) = 1369

we know that Z+(G) = Z+(G − e) + 1. Let B be a minimum positive semidefinite zero forcing370

set for G − e such that v ∈ B. Note that B is not a positive semidefinite zero forcing set for G371

since |B| < Z+(G). Furthermore, w /∈ B because if it were, then adding the edge e back into our372

graph would not change what v and w could force, implying that B would force G. Now we let373

B′ = B ∪{w}. Then B′ forces G and |B′| = Z+(G), so B′ is a minimum positive semidefinite zero374

forcing set for G and e is not in the forcing tree cover of any chronological forces of B′.375

The converse of Proposition 5.20 is false.376

Example 5.21. For the edge e of the graph G shown in Figure 5.2, Z+(G) = Z+(G− e) = 2,377

so z+
e (G) = 0, but e is not in any tree in the forcing tree cover of the chronological list of forces378

shown in Figure 5.2.379

e

Fig. 5.2: A chronological list of forces in the graph G that does not contain edge e

5.3. Edge subdivision and edge contraction. The effect of edge contraction and edge380

subdivision on the (standard) zero forcing number was established in [21]. The contraction of edge381
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e = {u, v} of G, denoted G/e, is obtained from G by identifying the vertices u and v, deleting any382

loops that arise in this process, and replacing any multiple edges by a single edge. In [21] it is383

shown that Z(G)− 1 ≤ Z(G/e) ≤ Z(G) + 1. The first inequality remains true but the second does384

not.385

Proposition 5.22. Let G be a graph and e = {u, v} ∈ E(G). Then Z+(G)− 1 ≤ Z+(G/e).386

Proof. Let w be the vertex of G/e obtained by identifying u and v. Choose a minimum positive387

semidefinite zero forcing set B′ of G/e that contains w (this is possible by Theorem 2.1). Then388

B = B′ \ {w} ∪ {u, v} is a positive semidefinite zero forcing set for G, so Z+(G) ≤ Z+(G/e) + 1.389

u ve

G G/e

Fig. 5.3: A graph G with Z+(G/e) = Z+(G) + 2.

Example 5.23. Let G be the graph obtained from k copies of C4 by identifying a common390

edge e = {u, v} as shown shown on the left in Figure 5.3 for k = 3; G/e as shown on the right in391

Figure 5.3, and the black vertices are minimum positive semidefinite zero forcing sets for each of392

the graphs G and G/e. Then Z+(G) = 2 and Z+(G/e) = k + 1, so Z+(G/e) = Z+(G) + (k − 1).393

The subdivision of edge e = {u, v} of G, denoted Ge, is the graph from G obtained by deleting394

e and inserting a new vertex w adjacent exactly to u and v. In the case of contraction, the result395

for positive semidefinite zero forcing was the same as for (standard) zero forcing. It was shown in396

[21] that Z(G) ≤ Z(Ge) ≤ Z(G) + 1, and each of the inequalities can be equality, but the case of397

positive semidefinite zero forcing is simpler.398

Theorem 5.24. Let G be a graph and e = {u, v} ∈ E(G). Then Z+(Ge) = Z+(G) and any399

positive semidefinite zero forcing set for G is a positive semidefinite zero forcing set for Ge.400

Proof. In Ge, denote the vertex added to G in the subdivision by w. Let B be a positive401

semidefinite zero forcing set for G and F a chronological list of forces. Without loss of generality,402

either u → v or neither forces the other in F . In Ge, color the vertices in B black. If u → v in403

F , replace this by u → w → v and otherwise perform the same forces as in F . If neither u nor v404

forces the other in F , then u → w after all the forces in F have been performed in Ge. In either405

case, if u → x 6= v when v is white, then x and v are in different components of G − S (where S406

is the set of black vertices at this stage). Then x and w are in different components of Ge − S,407

and the forcing can continue as before. A similar argument holds for v → x 6= u when u is white.408

Thus B is a positive semidefinite zero forcing set for Ge. By choosing B so that |B| = Z+(G),409

Z+(Ge) ≤ Z+(G).410

Now let B be a minimum positive semidefinite zero forcing set for Ge with u ∈ B. If w ∈ B,411

then set B′ = B \ {w} ∪ {v}; otherwise set B′ = B. Then B′ is a positive semidefinite zero forcing412

set for G. Since |B′| = |B|, Z+(G) ≤ Z+(Ge).413
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