A variant
on the graph parameters of
Colin de Verdière:
Implications to the minimum
rank of graphs

Leslie Hogben
Iowa State University, USA
joint work with
Francesco Barioli and Shaun Fallat

June 26, 2005
12th ILAS Conference, Regina, Canada
S_n denotes the set of $n \times n$ real symmetric matrices. All matrices are real and symmetric.

All graphs are simple.

The graph of $n \times n$ matrix A:
$\mathcal{G}(A) = (V, E)$
$V = \{1, ..., n\}$,
$E = \{\{i, j\} : a_{ij} \neq 0 \text{ and } i \neq j\}$.

The family of symmetric matrices associated with a graph G of order n:

$$S(G) = \{A \in S_n \mid \mathcal{G}(A) = G\}.$$

For matrix A, $S_A = S(\mathcal{G}(A))$.
The minimum rank of graph G:

$$\text{mr}(G) = \min_{A \in \mathcal{S}(G)} \text{rank } A.$$

The maximum eigenvalue multiplicity:

$$M(G) = \max_{A \in \mathcal{S}(G)} \{\text{mult}_A(\lambda) : \lambda \in \sigma(A)\}.$$

$$M(G) + \text{mr}(G) = |V(G)|.$$

Problem Determine the minimum rank (or maximum eigenvalue multiplicity) of a graph G.

- If G is the disjoint union of graphs G_i then

$$M(G) = \sum M(G_i)$$

$$\text{mr}(G) = \sum \text{mr}(G_i)$$
• If G is connected,
 $mr(G) = 0$ iff G is single vertex.
 $mr(G) = 1$ iff $G = K_n$, $n \geq 2$.

• If H is an induced subgraph of G then
 $mr(H) \leq mr(G)$.

• $M(G) = 1$ if and only if G is a path.
 [Fiedler 1969]

• For a connected graph G, $mr(G) \leq 2$ iff G
 does not contain as an induced subgraph
 any of $P_4, K_{3,3,3}$ or

 ![Graphs](attachment:attachment.png)

 [Barrett, van der Holst, and Loewy 2004]
For a tree T,

$$M(T) = P(T) = \Delta(T)$$

where

$P(T)$ is the path cover number

$$\Delta(T) = \max\{p - |Q| : T - Q \text{ is } p \text{ paths}\}.$$

[Johnson and Leal-Duarte 1999]

There are good algorithms for computing $\Delta(T), P(T)$.

For a unicyclic graph G,

$$P(G) \geq M(G)$$

[Barioli, Fallat, Hogben 2004]

Method to compute minimum rank of a vertex sum from minimum rank of the summands

[Barioli, Fallat, Hogben 2004]
Colin de Verdière (1990) defined a new graph parameter μ that bounds M from below and has nice properties.

Definition X *fully annihilates* A if
1. $AX = 0$;
2. $A \circ X = 0$;
3. $I_n \circ X = 0$.

Definition The matrix A has the *Strong Arnold Property* (SAP) if the zero matrix is the only symmetric matrix that fully annihilates A.

$\text{corank } A = \text{nullity } A = \text{multiplicity of eigenvalue } 0$, so $M(G) = \max_{A \in S(G)} \text{corank } A$.

Definition

$$\mu(G) = \max \{\text{corank } L\} \quad \text{such that}$$

1. $L \in S(G)$, and is a generalized Laplacian matrix (off-diagonal entries nonpositive).
2. L has exactly one negative eigenvalue (with multiplicity one).
3. L has SAP.
Colin de Verdière showed

- $\mu(G) \leq 1$ iff G is a disjoint union of paths.
- $\mu(G) \leq 2$ iff G is outerplanar.
- $\mu(G) \leq 3$ iff G is planar
- μ is minor monotone, i.e., if H is obtained from G by a sequence of edge deletions, isolated vertex deletions and edge contractions (in any order), then $\mu(H) \leq \mu(G)$.
To study minimum rank, generalized Laplacians and number of negative eigenvalues are not relevant.

Example

$$K_{2,2,2}$$

$$\begin{bmatrix} 0 & 1 & 1 & 0 & 1 & 1 \\ 1 & -3 & -2 & 1 & 0 & -1 \\ 1 & -2 & -1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 1 & 3 & 2 \\ 1 & -1 & 0 & 1 & 2 & 1 \end{bmatrix} = 2.$$

No generalized Laplacian of $K_{2,2,2}$ has rank 2.
But minor monotonicity is useful. Our new parameter:

$$\xi(G) = \max\{\text{corank } A : A \in S(G), A \text{ has SAP}\}.$$

- $$\mu(G) \leq \xi(G) \leq M(G)$$ for any $$G$$
- $$\xi(G) \geq 1$$ for any $$G$$ (because any corank 1 matrix has SAP)

Example $$K_{2,2,2}$$ continued.

$$\xi(K_{2,2,2}) = 4$$ because $$A$$ has SAP.

$$\mu(K_{2,2,2}) = 3$$ since $$K_{2,2,2}$$ is planar.

Example $$\xi(K_p) = M(K_p) = p - 1.$$
Theorem If G is the disjoint union of graphs $G_i, i = 1, \ldots, h$ then

$$\xi(G) = \max_{i=1,\ldots,h} \xi(G_i)$$

Corollary $\xi(G) = 1$ iff G is a disjoint union of paths.
Example Here is why you can’t sum the $\xi(G_i)$:

Let $x_1 = [-2, 1, 1]^T$, $x_2 = [-1, 1]^T$, so $A_i x_i = 0$

$\hat{x}_1 = [-2, 1, 1, 0, 0]^T$, $\hat{x}_2 = [0, 0, 0, -1, 1]^T$

$X = \hat{x}_1 \hat{x}_2^T + \hat{x}_2 \hat{x}_1^T =$

\[
\begin{bmatrix}
0 & 0 & 0 & 2 & -2 \\
0 & 0 & 0 & -1 & 1 \\
0 & 0 & 0 & -1 & 1 \\
2 & -1 & -1 & 0 & 0 \\
-2 & 1 & 1 & 0 & 0
\end{bmatrix}
\]

fully annihilates A, so A doesn’t not have SAP.
In our work on ξ we have followed the treatment of μ given by van der Holst, Lovász, and Shrijver (1999).

- SAP comes from manifold theory.
- $\mathcal{R}_A = \{B : \text{rank } B = \text{rank } A\}$.
- $S_A = S(\mathcal{G}(A))$.
- A has SAP iff manifolds \mathcal{R}_A and S_A intersect transversally at A.
- Transversal intersection allows perturbation.
Theorem If \(H \) is a subgraph of \(G \) then
\[\xi(H) \leq \xi(G). \]

Proof: \(H \) can be obtained from \(G \) by a series of deletions of edges and isolated vertices. Deletion of isolated vertices cannot increase \(\xi \) by disjoint union theorem.

Obtain \(G' \) from \(G \) by deleting edge \(uv \).

Choose \(A' \) \(\xi \)-optimal for \(G' \) so \(A' \) has SAP and \(R_{A'} \) and \(S_{A'} \) intersect transversally at \(A' \).

\(S(t) \) is the manifold of matrices obtained from matrices \(B \) in \(S_{A'} \) by replacing the \(u, v \)- and \(v, u \)-entries of \(B \) by \(t \).

\[R(t) = R_{A'}. \]

For sufficiently small positive \(t_0 \), \(R(t_0) \) and \(S(t_0) \) intersect transversally at some \(A \). So \(A \) has SAP, \(G(A) = G \).

\[\xi(G') = \text{corank } A' = \text{corank } A \leq \xi(G'). \]
Corollary If G has q independent vertices then $\xi(G) \leq |V(G)| - q + 1$.

Proof: Add edges between independent vertices to obtain \tilde{G} having path P_q as induced subgraph.

\[q - 1 = \text{mr}(P_q) \leq \text{mr}(\tilde{G}). \]

\[|V(G)| - (q - 1) \geq |V(\tilde{G})| - \text{mr}(\tilde{G}) = M(\tilde{G}) \geq \xi(\tilde{G}) \geq \xi(G). \]

Corollary $\xi(K_{p,q}) = p + 1$ $(1 \leq p \leq q, 3 \leq q)$.

Proof: $p + 1 = \mu(K_{p,q}) \leq \xi(K_{p,q}) \leq p + q - (q - 1)$
Lemma Let $A = \begin{bmatrix} \alpha & b_1^T & b_2^T & \cdots & b_k^T \\ b_1 & A_1 & 0 & \cdots & 0 \\ b_2 & 0 & A_2 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ b_k & 0 & 0 & \cdots & A_k \end{bmatrix}$,

$\text{corank } A_i \geq \text{corank } A_{i+1}$ for $i = 1, \ldots, k-1$. If A has SAP, then

1. $\text{corank } A_2 \leq 1$.

2. $\text{corank } A_3 \leq 1$, and, if $\text{corank } A_3 = 1$, then $\text{corank } A_1 = \text{corank } A_2 = 1$.

3. $\text{corank } A_i = 0$ for $i \geq 4$.

Proof uses same ideas as disjoint union theorem proof, using nonzero vectors in $\ker \begin{bmatrix} b_i^T \\ A_i \end{bmatrix}$.
Theorem If T is a tree that is not a path, then $\xi(T) = 2$.

Proof: Choose A ξ-optimal for T.

$\text{corank } A \geq 2$.

By Parter-Wiener Theorem, there is a vertex v such that $\text{corank } A(v) = \text{corank } A + 1$ and 0 is an eigenvalue of at least 3 components of $A(v)$.

So by Lemma, 0 must be a simple eigenvalue of exactly 3 components of $A(v)$.

$\xi(A) = \text{corank } A = \text{corank } A(v) - 1 = 2$.
Theorem If T is a tree and $\xi(T) < M(T)$, then we can add an edge to T to obtain graph G such that $M(G) < M(T)$.

Example

\[M(T) = P(T) = 8 \quad M(G) \leq P(G) = 7 \]
Theorem Let G be vertex-sum at v of graphs G_1, \ldots, G_k. Then

$$
\max_{i=1}^{k} \xi(G_i) \leq \xi(G) \leq \max_{i=1}^{k} \xi(G_i) + 1.
$$

Note: For a vertex sum,

$$
\mu(G) = \max_{i=1}^{k} \mu(G_i).
$$

Example

![Graphs with vertices and edges]

$\xi(G_1) = 2$ $\xi(G_2) = 1$ $\xi(G) = 3$

because $\text{mr}(G_1) \geq 4, \text{mr}(G) \geq 4$ and there is a matrix with SAP having corank 3.
Theorem If H is obtained from G by contraction of an edge of G, then $\xi(H) \leq \xi(G)$.

Proof is basically same as that given for μ by van der Holst, Lovász, and Shrijver (1999).

Corollary ξ is minor monotone.

Future directions

1. Finish extension of some properties of μ to ξ, such as maximum decrease in ξ when deleting a vertex.

2. Exploit contraction monotonicity.