Combinatorial Matrix Theory and Spectral Graph Theory

Leslie Hogben

Iowa State University and American Institute of Mathematics

ICART 2008

May 28, 2008
Introduction

Inverse Eigenvalue Problem for a Graph (IEPG)

Minimum Rank Problem for a Graph
 Basic properties of minimum rank
 Trees

Spectral Graph Theory
 Specific matrices $\mathcal{A}, \mathcal{L}, |\mathcal{L}|, \hat{\mathcal{A}}, \hat{\mathcal{L}}, |\hat{\mathcal{L}}|
 Relationships among $\mathcal{A}, \mathcal{L}, |\mathcal{L}|, \hat{\mathcal{A}}, \hat{\mathcal{L}}, |\hat{\mathcal{L}}|

Colin de Verdière Type Parameters
 $\mu(G), \nu(G)$
 $\xi(G)$
 Forbidden minors

Minimum Rank Problem: Recent Results
 Minimum rank graph catalogs
Combinatorial Matrix Theory

- Studies patterns of entries in a matrix rather than values
- In some applications, only the sign of the entry (or whether it is nonzero) is known, not the numerical value
- Uses graphs or digraphs to describe patterns
- Uses graph theory and combinatorics to obtain results about matrices
- **Inverse Eigenvalue Problem of a Graph (IEPG)** associates a family of matrices to a graph and studies spectra
Algebraic Graph Theory

- Uses algebra and linear algebra to obtain results about graphs or digraphs.
- Groups used extensively in the study of graphs.
- **Spectral graph theory** uses matrices and their eigenvalues are used to obtain information about graphs.
- Specific matrices:
 - adjacency, Laplacian, signless Laplacian matrices
 - Normalized versions of these matrices
- Colin de Verdière type parameters associate families of matrices to a graph but still use the matrices to obtain information about the graph.
Connections between these two approaches have yielded results in both directions.

Terminology and notation

- All matrices are real and symmetric
- Matrix $B = [b_{ij}]$
- $\sigma(B)$ is the *ordered spectrum* (eigenvalues) of B, repeated according to multiplicity, in nondecreasing order
- All graphs are simple
- Graph $G = (V, E)$
- **Inverse Eigenvalue Problem**: What sets of real numbers \(\beta_1, \ldots, \beta_n \) are possible as the eigenvalues of a matrix satisfying given properties of a matrix?

- **Inverse Eigenvalue Problem of a Graph (IEPG)**: For a given graph \(G \), what eigenvalues are possible for a matrix \(B \) having nonzero off-diagonal entries determined by \(G \)?
The graph $\mathcal{G}(B) = (V, E)$ of $n \times n$ matrix B is

- $V = \{1, \ldots, n\}$,
- $E = \{ij : b_{ij} \neq 0 \text{ and } i \neq j\}$.
- Diagonal of B is ignored.

Example:

$$B = \begin{bmatrix}
 2 & -1 & 3 & 5 \\
 -1 & 0 & 0 & 0 \\
 3 & 0 & -3 & 0 \\
 5 & 0 & 0 & 0
\end{bmatrix}$$

The **family of matrices described by G** is

$$\mathcal{S}(G) = \{B : B^T = B \text{ and } \mathcal{G}(B) = G\}.$$
Tools for IEPG

- B is irreducible if and only if $G(B)$ is connected
- Any (symmetric) matrix is permutation similar to a block diagonal matrix and the spectrum of B is the union of the spectra of these blocks
- The diagonal blocks correspond to the connected components of $G(B)$
- It is customary to assume a graph is connected (at least until we cut it up)
\(B(i) \) is the *principal submatrix* obtained from \(B \) by deleting the \(i^{th} \) row and column.

- Eigenvalue interlacing: If \(\beta_1 \leq \cdots \leq \beta_n \) are the eigenvalues of \(B \), and \(\gamma_1 \leq \cdots \leq \gamma_{n-1} \) are the eigenvalues of \(B(i) \), then

\[
\beta_1 \leq \gamma_1 \leq \beta_2 \leq \cdots \leq \gamma_{n-1} \leq \beta_n
\]

- [Parter 69], [Wiener 84] If \(G(B) \) is a tree and \(\text{mult}_B(\beta) \geq 2 \), then there is \(k \) such that

\[
\text{mult}_{B(k)}(\beta) = \text{mult}_B(\beta) + 1
\]
Ordered multiplicity lists

- If the distinct eigenvalues of B are $\tilde{\beta}_1 < \cdots < \tilde{\beta}_r$ with multiplicities m_1, \ldots, m_r, then (m_1, \ldots, m_r) is called the ordered multiplicity list of B.

- Determining the possible ordered multiplicity lists of matrices in $S(G)$ is the ordered multiplicity list problem for G.

- The IEPG of G can be solved by
 - solving the ordered multiplicity list problem for G
 - proving that if ordered multiplicity list (m_1, \ldots, m_r) is possible, then for any real numbers $\gamma_1 < \cdots < \gamma_r$, there is $B \in S(G)$ having eigenvalues $\gamma_1, \ldots, \gamma_r$ with multiplicities m_1, \ldots, m_r.
 - If this case, IEPG for G is equivalent to the ordered multiplicity list problem for G
[Fiedler 69], [Johnson, Leal Duarte, Saiago 03],
[Barioli, Fallat 05]
The possible ordered multiplicity lists of matrices in \(S(T) \)
have been determined for the following families of trees \(T \):

- paths
- double paths
- stars
- generalized stars
- double generalized stars

For \(T \) in any of these families, IEPG for \(G \) is equivalent to
the ordered multiplicity list problem for \(G \)

It was widely believed that the ordered multiplicity list
problem was always equivalent to IEPG for trees.
Example

[Barioli, Fallat 03] For the tree T_{BF}

the ordered eigenvalue list for the adjacency matrix A is

$$(-\sqrt{5}, -\sqrt{2}, -\sqrt{2}, 0, 0, 0, 0, \sqrt{2}, \sqrt{2}, \sqrt{5}),$$

so the ordered multiplicity list $(1, 2, 4, 2, 1)$ is possible.

But if $B \in S(T_{BF})$ has the five distinct eigenvalues

$\tilde{\beta}_1 < \tilde{\beta}_2 < \tilde{\beta}_3 < \tilde{\beta}_4 < \tilde{\beta}_5$ with ordered multiplicity list

$(1, 2, 4, 2, 1)$, then $\tilde{\beta}_1 + \tilde{\beta}_5 = \tilde{\beta}_2 + \tilde{\beta}_4$.
First step in solving IEPG is determining maximum possibility multiplicity of an eigenvalue.

- **maximum multiplicity** $M(G) = \max_{B \in S(G)} \text{mult}_B(\beta)$
- **minimum rank** $mr(G) = \min_{B \in S(G)} \text{rank}(B)$
- $M(G)$ is the maximum nullity of a matrix in $S(G)$
- $M(G) + mr(G) = |G|$

The **Minimum Rank Problem for a Graph** is to determine $mr(G)$ for any graph G.
Examples:
Path: $\text{mr}(P_n) = n - 1$. Complete graph: $\text{mr}(K_n) = 1$

\[
\begin{bmatrix}
? & * & 0 & \ldots & 0 & 0 \\
* & ? & * & \ldots & 0 & 0 \\
0 & * & ? & \ldots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \ldots & ? & * \\
0 & 0 & 0 & \ldots & * & ? \\
\end{bmatrix}

* is nonzero, ? is indefinite
Minimum rank

Let G have n vertices.

- It is easy to obtain a matrix $B \in S(G)$ with $\text{rank}(B) = n - 1$ (translate)
- It is easy to have full rank (use large diagonal)
- If G is the disjoint union of graphs G_i then
 \[
 \text{mr}(G) = \sum \text{mr}(G_i)
 \]
- Only connected graphs are studied
- If G is connected, $\text{mr}(G) = 0$ iff G is single vertex
 $\text{mr}(G) = 1$ iff $G = K_n$, $n \geq 2$
- $\text{mr}(G) = n - 1$ if and only if G is a path [Fiedler 69]
Minimum Rank Problem for Trees

Let T be a tree. $\Delta(T)$ is the maximum of $p - q$ such that there is a set of q vertices whose deletion leaves p paths.

Theorem (Johnson, Leal Duarte 99)

$$|T| - \text{mr}(T) = M(T) = \Delta(T)$$

A related method for computing $\text{mr}(T)$ directly appeared earlier in [Nylen 96].

Numerous algorithms compute $\Delta(T)$ by using high degree (≥ 3) vertices.

The following algorithm works from the outside in. ν is an outer high degree vertex if at most one component of $T - \nu$ contains high degree vertices.

Delete each outer high degree vertex. Repeat as needed.
Example

Compute $\text{mr}(T)$ by computing $\Delta(T) = M(T)$.

![Graph Diagram]

Example

Compute $\text{mr}(T)$ by computing $\Delta(T) = M(T)$.

![Graph Diagram]
Example

Compute $\text{mr}(T)$ by computing $\Delta(T) = M(T)$.
Example

Compute \(mr(T) \) *by computing* \(\Delta(T) = M(T) \).
Example

Compute \(\text{mr}(T) \) by computing \(\Delta(T) = M(T) \).
Example

Compute $\text{mr}(T)$ by computing $\Delta(T) = M(T)$:

- the six vertices $\{1, 2, 3, 5, 6, 7\}$ were deleted
- there are 18 paths
- $M(T) = \Delta(T) = 18 - 6 = 12$
- $\text{mr}(T) = 35 - 12 = 23$
Adjacency matrix

- $\mathcal{A}(G) = \mathcal{A} = [a_{ij}]$ where $a_{ij} = \begin{cases} 1 & \text{if } i \sim j \\ 0 & \text{if } i \not\sim j \end{cases}$
- $\sigma(\mathcal{A}) = (\alpha_1, \ldots, \alpha_n)$

Example W_5

$$
\mathcal{A} = \begin{bmatrix}
0 & 1 & 1 & 1 \\
1 & 0 & 1 & 0 \\
1 & 1 & 0 & 1 \\
1 & 0 & 1 & 0
\end{bmatrix}
$$

$(\alpha_1, \alpha_2, \alpha_3, \alpha_4, \alpha_5) = (-2, 1 - \sqrt{5}, 0, 0, 1 + \sqrt{5})$
If two graphs have different spectra (equivalently, different characteristic polynomials) of the adjacency matrix, then they are not isomorphic.

However, non-isomorphic graphs can be cospectral.

Example

\[p(x) = x^6 - 7x^4 - 4x^3 + 7x^2 + 4x - 1 \]

Spectrally determined graphs:

- Complete graphs
- Graphs with one edge
- Regular of degree 2
- Regular of degree n-3
- \(K_n, n, ..., n \)
- Empty graphs
- Graphs missing only 1 edge
- \(mK_n \)
Laplacian matrix

\[\mathcal{L}(G) = \mathcal{L} = D - \mathcal{A}(G) \text{ where} \]
\[D = \text{diag}(\deg(1), \ldots, \deg(n)). \]
\[\sigma(\mathcal{L}) = (\lambda_1, \ldots, \lambda_n) \]

Example \(W_5 \)

\[
\mathcal{L} = \begin{bmatrix}
4 & -1 & -1 & -1 & -1 \\
-1 & 3 & -1 & 0 & -1 \\
-1 & -1 & 3 & -1 & 0 \\
-1 & 0 & -1 & 3 & -1 \\
-1 & -1 & 0 & -1 & 3
\end{bmatrix}
\]

\((\lambda_1, \lambda_2, \lambda_3, \lambda_4, \lambda_5) = (0, 3, 3, 5, 5) \)
- isomorphic graphs must have the same Laplacian spectrum (i.e., Laplacian characteristic polynomial)
- non-isomorphic graphs can be Laplacian cospectral
- [Schwenk 73], [McKay 77] For almost all trees T there is a non-isomorphic tree T' that has both the same adjacency spectrum and the same Laplacian spectrum
- for any G, $\lambda_1(G) = 0$
- algebraic connectivity: $\lambda_2(G)$, second smallest eigenvalue of \mathcal{L}
- vertex connectivity: $\kappa_V(G)$, minimum number of vertices in a cutset ($G \neq K_n$)
- [Fiedler 73] $\lambda_2(G) \leq \kappa_V(G)$

Example $\lambda_2(W_5) = 3 = \kappa_V(W_5)$
Signless Laplacian matrix

- $|\mathcal{L}|(G) = |\mathcal{L}| = D + A(G)$ where $D = \text{diag}(\deg(1), \ldots, \deg(n))$
- $\sigma(|\mathcal{L}|) = (\mu_1, \ldots, \mu_n)$

Example W_5

$\begin{vmatrix}
2 & & & 4 \\
& 1 & & \\
& & 3 & \\
5 & & & 4
\end{vmatrix}$

$\begin{vmatrix}
4 & 1 & 1 & 1 \\
1 & 3 & 1 & 0 \\
1 & 0 & 1 & 3 \\
1 & 1 & 0 & 1
\end{vmatrix}$

$(\mu_1, \mu_2, \mu_3, \mu_4, \mu_5) = (1, \frac{9-\sqrt{17}}{2}, 3, 3, \frac{9+\sqrt{17}}{2})$
Normalized adjacency matrix

- \(\hat{A} = \sqrt{D^{-1}} A \sqrt{D^{-1}} \) where
 \(D = \text{diag}(\deg(1), \ldots, \deg(n)) \)
- \(\sigma(\hat{A}) = (\hat{\alpha}_1, \ldots, \hat{\alpha}_n) \)

Example \(W_5 \)

\[
\hat{A} = \begin{bmatrix}
0 & \frac{1}{2\sqrt{3}} & \frac{1}{2\sqrt{3}} & \frac{1}{2\sqrt{3}} & \frac{1}{2\sqrt{3}} \\
\frac{1}{2\sqrt{3}} & 0 & \frac{1}{3} & 0 & \frac{1}{3} \\
\frac{1}{2\sqrt{3}} & \frac{1}{3} & 0 & \frac{1}{3} & 0 \\
\frac{1}{2\sqrt{3}} & 0 & \frac{1}{3} & 0 & \frac{1}{3} \\
\frac{1}{2\sqrt{3}} & \frac{1}{3} & 0 & \frac{1}{3} & 0 \\
\end{bmatrix}
\]

\((\hat{\alpha}_1, \hat{\alpha}_2, \hat{\alpha}_3, \hat{\alpha}_4, \hat{\alpha}_5) = (-\frac{2}{3}, -\frac{1}{3}, 0, 0, 1)\)
Normalized Laplacian matrix

\[\hat{\mathcal{L}} = \sqrt{D}^{-1} \mathcal{L} \sqrt{D}^{-1} \]

\[\sigma(\hat{\mathcal{L}}) = (\hat{\lambda}_1, \ldots, \hat{\lambda}_n) \]

Example \(W_5 \)

\[
\hat{\mathcal{L}} = \begin{bmatrix}
1 & -\frac{1}{2\sqrt{3}} & -\frac{1}{2\sqrt{3}} & -\frac{1}{2\sqrt{3}} & -\frac{1}{2\sqrt{3}} \\
-\frac{1}{2\sqrt{3}} & 1 & -\frac{1}{3} & 0 & -\frac{1}{3} \\
-\frac{1}{2\sqrt{3}} & -\frac{1}{3} & 1 & -\frac{1}{3} & 0 \\
-\frac{1}{2\sqrt{3}} & 0 & -\frac{1}{3} & 1 & -\frac{1}{3} \\
-\frac{1}{2\sqrt{3}} & -\frac{1}{3} & 0 & -\frac{1}{3} & 1
\end{bmatrix}
\]

\((\hat{\lambda}_1, \hat{\lambda}_2, \hat{\lambda}_3, \hat{\lambda}_4, \hat{\lambda}_5) = (0, 1, 1, \frac{4}{3}, \frac{5}{3}) \)
Normalized Signless Laplacian matrix

\[\widehat{\mathcal{L}} = \sqrt{D^{-1}} |\mathcal{L}| \sqrt{D^{-1}} \]

\[\sigma(\widehat{\mathcal{L}}) = (\hat{\mu}_1, \ldots, \hat{\mu}_n) \]

Example \(W_5 \)

\[
\begin{bmatrix}
1 & \frac{1}{2\sqrt{3}} & \frac{1}{2\sqrt{3}} & \frac{1}{2\sqrt{3}} & \frac{1}{2\sqrt{3}} \\
\frac{1}{2\sqrt{3}} & 1 & \frac{1}{3} & 0 & \frac{1}{3} \\
\frac{1}{2\sqrt{3}} & \frac{1}{3} & 1 & \frac{1}{3} & 0 \\
\frac{1}{2\sqrt{3}} & 0 & \frac{1}{3} & 1 & \frac{1}{3} \\
\frac{1}{2\sqrt{3}} & \frac{1}{3} & 0 & \frac{1}{3} & 1
\end{bmatrix}
\]

\[(\hat{\mu}_1, \hat{\mu}_2, \hat{\mu}_3, \hat{\mu}_4, \hat{\mu}_5) = \left(\frac{1}{3}, \frac{2}{3}, 1, 1, 2 \right) \]
Relationships between \mathcal{A}, \mathcal{L}, $|\mathcal{L}|$, $\hat{\mathcal{A}}$, $\hat{\mathcal{L}}$, $|\hat{\mathcal{L}}|$ and their spectra

Let G be a graph of order n.

- $\hat{\mathcal{A}} + \hat{\mathcal{L}} = I$
- So $\hat{\alpha}_{n-k+1} + \hat{\lambda}_k = 1$
- $|\hat{\mathcal{L}}| + \hat{\mathcal{L}} = 2I$
- So $\hat{\mu}_{n-k+1} + \hat{\lambda}_k = 2$

Example W_5 eigenvalue relationships

$(\hat{\alpha}_5, \hat{\alpha}_4, \hat{\alpha}_3, \hat{\alpha}_2, \hat{\alpha}_1) = (1, 0, 0, -\frac{1}{3}, -\frac{2}{3})$

$(\hat{\lambda}_1, \hat{\lambda}_2, \hat{\lambda}_3, \hat{\lambda}_4, \hat{\lambda}_5) = (0, 1, 1, \frac{4}{3}, \frac{5}{3})$

$(\hat{\mu}_5, \hat{\mu}_4, \hat{\mu}_3, \hat{\mu}_2, \hat{\mu}_1) = (2, 1, 1, \frac{2}{3}, \frac{1}{3})$
Let G be an r-regular graph of order n.

- $\mathcal{L} + A = rl$, so $\lambda_k = r - \alpha_{n-k+1}$

- $|\mathcal{L}| - A = rl$, so $\mu_k = r + \alpha_k$

- $\hat{\mathcal{A}} = \frac{1}{r}A$, so $\hat{\alpha}_k = \frac{1}{r}\alpha_k$

- $|\hat{\mathcal{L}}| = \frac{1}{r}|\mathcal{L}|$, so $\hat{\mu}_k = \frac{1}{r}\mu_k$
\(\mathcal{A}, \mathcal{L}, |L|, \hat{\mathcal{A}}, \hat{\mathcal{L}}, \hat{|L|} \) and the incidence matrix

Let \(G \) be a graph with \(n \) vertices and \(m \) edges.

- **incidence matrix** \(\mathcal{P} = \mathcal{P}(G) \) is the \(n \times m \) 0,1-matrix with rows indexed by the vertices of \(G \) and columns indexed by the edges of \(G \)

\[
\mathcal{P} = [p_{ve}] \quad \text{where} \quad p_{ve} = \begin{cases} 1 & \text{if } e \text{ is incident with } v \\ 0 & \text{otherwise} \end{cases}
\]

- \(|L| = \mathcal{P}\mathcal{P}^T \)

- \(\hat{|L|} = \sqrt{D}^{-1}|L|\sqrt{D}^{-1} = (\sqrt{D}^{-1}\mathcal{P})(\sqrt{D}^{-1}\mathcal{P})^T \)

- \(\mathcal{L} = \mathcal{P}'\mathcal{P}'^T \) where \(\mathcal{P}' \) is an oriented incidence matrix.

- \(\hat{\mathcal{L}} = \sqrt{D}^{-1}\mathcal{L}\sqrt{D}^{-1} = (\sqrt{D}^{-1}\mathcal{P}')(\sqrt{D}^{-1}\mathcal{P}')^T \)

- \(\mathcal{L}, |L|, \hat{\mathcal{L}}, \hat{|L|} \) are all positive semidefinite

- all eigenvalues \(\lambda_k, \mu_k, \hat{\lambda}_k, \hat{\mu}_k \) are nonnegative.
The spectral radius of B is $\rho(B) = \max_{\beta \in \sigma(B)} |\beta|$

$\mathcal{A}, |\mathcal{L}|, \widehat{\mathcal{A}}, |\widehat{\mathcal{L}}| \geq 0$ (nonnegative)

Theorem (Perron-Forbenius)
Let $P \geq 0$ be irreducible. Then

- $\rho(P) > 0$,
- $\rho(P)$ is an eigenvalue of P,
- eigenvalue $\rho(P)$ has a positive eigenvector, and
- $\rho(P)$ is a simple eigenvalue of P (multiplicity 1).
Let $G \neq K_n$ be connected.

- $\sigma(|\hat{\mathcal{L}}|) \subseteq [0, 2]$ and $\hat{\mu}_n = 2 = \rho(|\hat{\mathcal{L}}|)$
- $\sigma(\hat{\mathcal{A}}) \subseteq [-1, 1]$ and $\hat{\alpha}_n = 1 = \rho(\hat{\mathcal{A}})$
- $\sigma(\hat{\mathcal{L}}) \subseteq [0, 2]$ and $\hat{\lambda}_1 = 0$
- $0 < \hat{\lambda}_2 \leq 2$
- $\frac{n}{n-1} \leq \hat{\lambda}_n \leq 2$ and $\hat{\lambda}_n = 2$ if and only if G is bipartite
- $\sum_{i=1}^{n} \hat{\lambda}_i = n$
Colin de Verdière’s graph parameters

- Colin de Verdière defined new graph parameters $\mu(G)$ and $\nu(G)$
 - minor monotone
 - bound M from below
 - use the Strong Arnold Property
- Unlike the specific matrices originally used in spectral graph theory, these parameters involve families of matrices
- Close connections with IEPG and minimum rank
A minor of G is a graph obtained from G by a sequence of edge deletions, vertex deletions, and edge contractions.

A graph parameter ζ is minor monotone if for every minor H of G, $\zeta(H) \leq \zeta(G)$.

X fully annihilates B if

1. $BX = 0$
2. X has 0 where B has nonzero
3. all diagonal elements of X are 0

The matrix B has the Strong Arnold Property (SAP) if the zero matrix is the only symmetric matrix that fully annihilates B.
See [van der Holst, Lovász, Shrijver 99] for information about SAP

- SAP comes from manifold theory.
- $\mathcal{R}_B = \{C : \text{rank } C = \text{rank } B\}$.
- $S_B = S(\mathcal{G}(B))$.
- B has SAP if and only if manifolds \mathcal{R}_B and S_B intersect transversally at B.
- Transversal intersection allows perturbation.
$$\mu(G) = \max\{\text{null}(L)\} \text{ such that}$$

1. L is a generalized Laplacian matrix
 ($L \in S(G)$ and off-diagonal entries ≤ 0)
2. L has exactly one negative eigenvalue (with multiplicity one)
3. L has SAP

Theorem (Colin de Verdière 90)

- μ is minor monotone
- $\mu(G) \leq 1$ if and only if G is a path
- $\mu(G) \leq 2$ if and only if G is outerplanar
- $\mu(G) \leq 3$ if and only if G is planar
For any graph,
\[\mu(G) \leq M(G). \]

If \(G \) is not planar then \(3 < \mu(G) \leq M(G) \) is sometimes useful for small graphs.

To study minimum rank, generalized Laplacians and number of negative eigenvalues are not usually relevant.
Example

- $K_{2,2,2}$ is planar but not outer planar, so $\mu(K_{2,2,2}) = 3$ (no generalized Laplacian of $K_{2,2,2}$ has rank 2)
- $\text{mr}(K_{2,2,2}) = 2$ and $M(K_{2,2,2}) = 4$

\[
\text{rank } B = \begin{bmatrix}
0 & 1 & -1 & 0 & 1 & 1 \\
1 & 0 & 1 & 1 & 0 & 1 \\
-1 & 1 & -2 & -1 & 1 & 0 \\
0 & 1 & -1 & 0 & 1 & 1 \\
1 & 0 & 1 & 1 & 0 & 1 \\
1 & 1 & 0 & 1 & 1 & 2 \\
\end{bmatrix} = 2
\]
\[\nu(G) = \max\{\null(B)\} \quad \text{such that} \]

1. \(B \in S(G) \)
2. \(B \) is positive semi-definite
3. \(B \) has SAP

- [Colin de Verdière] \(\nu \) is minor monotone
- For any graph, \(\nu(G) \leq M(G) \)
To study minimum rank, positive semi-definite is not usually relevant.

Example

- No positive semi-definite matrix in $S(K_{2,3})$ has rank 2 so $\nu(K_{2,3}) = 2$
- $\text{mr}(K_{2,3}) = 2$ and $M(K_{2,3}) = 3$

![Diagram of $K_{2,3}$](image)

$$\text{rank } B = \begin{bmatrix} 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 \\ 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 \end{bmatrix} = 2$$
The new parameter ξ

- To study minimum rank, positive semi-definite, generalized Laplacians and number of negative eigenvalues usually are not relevant.
- Minor monotonicity is useful.

Definition

$\xi(G) = \max \{ \text{null}(B) : B \in S(G), B \text{ has SAP} \}$

Example: $\xi(K_{2,2,2}) = 4 = M(K_{2,2,2})$ because the matrix B has SAP

Example: $\xi(K_{2,3}) = 3 = M(K_{2,3})$ because the matrix B has SAP
For any graph G,

- $\mu(G) \leq \xi(G)$
- $\nu(G) \leq \xi(G)$
- $\xi(G) \leq M(G)$
- $\xi(P_n) = 1 = M(P_n)$
- $\xi(K_n) = n - 1 = M(K_n)$
- If T is a non-path tree, $\xi(T) = 2$.
Theorem (Barioli, Fallat, Hogben 05)

\(\xi \) is minor monotone.

Forbidden minors

Since \(\xi \) is minor monotone, the graphs \(G \) such that \(\xi(G) \leq k \) can be characterized by a finite set of forbidden minors.

\(\xi(G) \leq 1 \) if and only if \(G \) contains no \(K_3 \) or \(K_{1,3} \) minor.
Theorem (Hogben, van der Holst 07)

\[\xi(G) \leq 2 \text{ if and only if } G \text{ contains no minor in the } T_3 \text{ family.} \]

\[\text{T}_3 \text{ family} \]

K_4

K_{2,3}

T_3
Minimum rank problem

Minimum rank is characterized for:

- trees [Nylen 96], [Johnson, Leal-Duarte 99]
- unicyclic graphs [Barioli, Fallat, Hogben 05]
- extreme minimum rank:
 \[\text{mr}(G) = 0, 1, 2: \] [Barrett, van der Holst, Loewy 04]
 \[|G| - 1, |G| - 2: \] [Fiedler 69],
 [Hogben, van der Holst 07], [Johnson, Loewy, Smith]

Reduction techniques for

- cut-set of order 1 [Barioli, Fallat, Hogben 04]
 and order 2 [van der Holst 08]
- joins [Barioli, Fallat 06]
Minimum rank graph catalogs

- Minimum rank of many families of graphs determined at the 06 AIM Workshop.
- On-line catalogs of minimum rank for small graphs and families developed.
- The ISU group determined the order of all graphs of order 7.

Minimum rank of families of graphs
http://aimath.org/pastworkshops/catalog2.html

Minimum rank of small of graphs
http://aimath.org/pastworkshops/catalog1.html
Thank You!