A variant on the graph parameters of Colin de Verdière: Implications to the minimum rank of graphs

Leslie Hogben, Iowa State University, USA
Francesco Barioli, University of Tennessee-Chattanooga, USA
Shaun Fallat, University of Regina, Canada
Hein van der Holst, Eindhoven University of Technology, Netherlands

Aveiro Workshop on Graph Spectra
April 10, 2006
Introduction
Minimum rank and maximum eigenvalue multiplicity
Colin de Verdière’s parameters

New parameter ξ
Definition and Examples
Subgraph monotonicity
Forbidden minors
ξ, M, and minimum rank

References
Introduction

- All matrices are real and symmetric.

- $\text{corank}(A) = \text{null}(A) = \dim(\ker(A)) = \text{mult}_A(0)$

- All graphs are simple.

- H is a minor of G if H is obtained from G by a sequence of edge deletions, isolated vertex deletions and edge contractions (in any order).
The graph $G(A) = (V, E)$ of $n \times n$ symmetric matrix A is

- $V = \{1, \ldots, n\}$,
- $E = \{ij : a_{ij} \neq 0 \text{ and } i \neq j\}$.
- Diagonal of A is ignored.

The family of symmetric matrices described by a graph is

$$S(G) = \{A : A^T = A \text{ and } G(A) = G\}.$$
Minimum rank and maximum eigenvalue multiplicity

The minimum rank of graph G:

$$\text{mr}(G) = \min_{A \in \mathcal{S}(G)} \text{rank } A.$$

The maximum eigenvalue multiplicity:

$$M(G) = \max_{A \in \mathcal{S}(G)} \{\text{mult}_A(\lambda) : \lambda \in \sigma(A)\}.$$

Problem Determine the minimum rank (or maximum eigenvalue multiplicity) of a graph G.

Properties of minimum rank and maximum multiplicity

- \(M(G) = \max_{A \in \mathcal{S}(G)} \{ \text{null}(A) \} \).
- \(M(G) + \text{mr}(G) = |V(G)| \).
- If \(G \) is the disjoint union of graphs \(G_i \) then
 \[
 M(G) = \sum M(G_i) \\
 \text{mr}(G) = \sum \text{mr}(G_i)
 \]
- If G is connected,
 $\text{mr}(G) = 0$ iff G is single vertex.
 $\text{mr}(G) = 1$ iff $G = K_n$, $n \geq 2$.

- $M(G) = 1$ if and only if G is a path.
 [Fiedler 1969]

- For a connected graph G, $\text{mr}(G) \leq 2$ iff G does not contain as an induced subgraph any of P_4, $K_{3,3,3}$ or

 ![Diagram](image_url)

 [Barrett, van der Holst, and Loewy]
Minimum rank is monotone on induced subgraphs, i.e., if H is an induced subgraph of G, then

$$\text{mr}(H) \leq \text{mr}(G).$$

Unfortunately, M is not monotone on induced subgraphs:

Graph F \quad Induced subgraph D \quad Induced subgraph $K_{1,4}$

$$3 = \text{mr}(D) \leq \text{mr}(F), \text{ so } M(F) = 2, \text{ but } M(K_{1,4}) = 3.$$
- For a tree T,

$$M(T) = P(T) = \Delta(T)$$

where $P(T)$ is the path cover number, and

$$\Delta(T) = \max\{p - |Q| : T - Q \text{ is } p \text{ paths}\}.$$

[Johnson, Leal-Duarte]

- For unicyclic graph G, $M(G) \leq P(G)$.

[Barioli, Fallat, Hogben]

- There are good algorithms for computing $\Delta(T), P(T)$.
Colin de Verdière defined new graph parameters μ and ν with monotonicity properties that bound M from below, using the Strong Arnold Property.

Definition X fully annihilates A if

1. $AX = 0$;
2. $A \circ X = 0$, i.e. X has 0 where A has nonzero;
3. $I_n \circ X = 0$, i.e., all diagonal elements of X are 0.

Definition

The matrix A has the *Strong Arnold Property* (SAP) if the zero matrix is the only symmetric matrix that fully annihilates A.

SAP is equivalent to transverse intersection of the constant rank manifold and the constant pattern manifold.
Definition $\mu(G) = \max\{\text{null}(L)\}$ such that

1. L is a generalized Laplacian matrix ($L \in \mathcal{S}(G)$ and off-diagonal entries nonpositive).
2. L has exactly one negative eigenvalue (with multiplicity one).
3. L has SAP.

For a connected simple graph G,

- $\mu(G) \leq 1$ if and only if G is a path.
- $\mu(G) \leq 2$ if and only if G is outerplanar.
- $\mu(G) \leq 3$ if and only if G is planar.

[Colin de Verdière]
- μ is minor monotone, i.e., if H is a minor of G, then

$$\mu(H) \leq \mu(G)$$

[Colin de Verdière 1990]

- For any graph,

$$\mu(G) \leq M(G).$$

- To study minimum rank, generalized Laplacians and number of negative eigenvalues are not relevant.
Example: No generalized Laplacian of $K_{2,2,2}$ has rank 2 but $\text{mr}(K_{2,2,2}) = 2$.

\[
\text{rank } A = \begin{bmatrix}
0 & 1 & 1 & 0 & 1 & 1 \\
1 & -3 & -2 & 1 & 0 & -1 \\
1 & -2 & -1 & 1 & 1 & 0 \\
0 & 1 & 1 & 0 & 1 & 1 \\
1 & 0 & 1 & 1 & 3 & 2 \\
1 & -1 & 0 & 1 & 2 & 1
\end{bmatrix} = 2
\]
Another Colin de Verdière parameter:

Definition \(\nu(G) = \max\{\text{null}(A)\} \) such that

1. \(A \in S(G) \).
2. \(A \) is positive semi-definite.
3. \(A \) has SAP.

- \(\nu \) is minor monotone, i.e., if \(H \) is a minor of \(G \), then

\[
\nu(H) \leq \nu(G)
\]

[Colin de Verdière]

- For any graph,

\[
\nu(G) \leq M(G).
\]
To study minimum rank, positive semi-definite is not relevant.

Example No positive semi-definite matrix in $S(K_{2,3})$ has rank 2 but $\text{mr}(K_{2,3}) = 2$.

$$\begin{bmatrix} 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 \\ 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 \end{bmatrix} = 2$$
The new parameter ξ

- To study minimum rank, positive semi-definite, generalized Laplacians and number of negative eigenvalues are not relevant.
- Minor monotonicity is useful.

The new parameter:

$$\xi(G) = \max\{\text{null}(A) : A \in S(G), A \text{ has SAP}\}.$$

Example: $\xi(K_{2,2,2}) = 4 = M(K_{2,2,2})$.
Example: $\xi(K_{2,3}) = 3 = M(K_{2,3})$.
For any graph G,

- $\mu(G) \leq \xi(G)$.
- $\nu(G) \leq \xi(G)$.
- $\xi(G) \leq M(G)$.

- $\xi(P_n) = 1 = M(P_n)$
- $\xi(K_n) = n - 1 = M(K_n)$
- If T is a non-path tree, $\xi(T) = 2$.
Theorem (Barioli, Fallat, Hogben, 2005)

If G is the disjoint union of graphs G_i, $i = 1, \ldots, k$ then

$$\xi(G) = \max_{i=1,\ldots,k} \xi(G_i).$$

Example Here is why you can't sum the $\xi(G_i)$:

Let $A = \begin{bmatrix} A_1 & 0 \\ 0 & A_2 \end{bmatrix}$ and let $x_i, i = 1, 2$ satisfy $A_ix_i = 0$.

Then $X = \begin{bmatrix} 0 & x_1x_2^T \\ x_2x_1^T & 0 \end{bmatrix}$ fully annihilates A, so A does not have SAP.
- SAP comes from manifold theory.
- $\mathcal{R}_A = \{B : \text{rank } B = \text{rank } A\}$.
- $S_A = S(\mathcal{G}(A))$.
- A has SAP if and only if manifolds \mathcal{R}_A and S_A intersect transversally at A.
- Transversal intersection allows perturbation.

[van der Holst, Lovász, Schrijver]
Theorem (Barioli, Fallat, Hogben, 2005)

If H is a subgraph of G then $\xi(H) \leq \xi(G)$.

Proof.

• Deletion of isolated vertices cannot increase ξ by disjoint union theorem.
• Obtain G' from G by deleting edge uv and show $\xi(G') \leq \xi(G)$:
• Choose $A' \in \mathcal{S}(G')$, $\text{null}(A') = \xi(G')$, and A' has SAP, so $\mathcal{R}_{A'}$ and $\mathcal{S}_{A'}$ intersect transversally at A'.
• $\mathcal{S}(t)$ is the manifold of matrices obtained from matrices B in $\mathcal{S}_{A'}$ by replacing the u, v- and v, u-entries of B by t.
• $\mathcal{R}(t) = \mathcal{R}_{A'}$.
• For sufficiently small positive t_0, $\mathcal{R}(t_0)$ and $\mathcal{S}(t_0)$ intersect transversally at some A. So A has SAP and $\mathcal{G}(A) = G$.
• $\xi(G') = \text{null}(A') = \text{null}(A) \leq \xi(G)$.
\qed
Corollary If \(G \) has \(q \) independent vertices then
\[
\xi(G) \leq |V(G)| - q + 1.
\]

Proof.
Add edges between independent vertices to obtain \(\tilde{G} \) having path \(P_q \) as induced subgraph.

\[
q - 1 = \text{mr}(P_q) \leq \text{mr}(\tilde{G}).
\]

\[
|V(G)| - (q - 1) \geq |V(\tilde{G})| - \text{mr}(\tilde{G}) = M(\tilde{G}) \geq \xi(\tilde{G}) \geq \xi(G). \quad \square
\]

Corollary \(\xi(K_{p,q}) = p + 1 \) (\(1 \leq p \leq q \), \(3 \leq q \)).
Proof. \(p + 1 = \mu(K_{p,q}) \leq \xi(K_{p,q}) \leq p + q - (q - 1) \).
Theorem (Barioli, Fallat, Hogben, 2005)

If T is a tree and $\xi(T) < M(T)$, then we can add an edge to T to obtain graph G such that $M(G) < M(T)$.

Example

$M(T) = P(T) = 8 \quad M(G) \leq P(G) = 7$
Theorem (Barioli, Fallat, Hogben, 2005)

\[\xi \text{ is minor monotone, i.e., if } H \text{ is a minor of } G, \text{ then } \xi(H) \leq \xi(G). \]

Forbidden minors

Since \(\xi \) is minor monotone, the graphs \(G \) such that \(\xi(G) \leq k \) can be characterized by a finite set of forbidden minors.

\[\xi(G) \leq 1 \text{ if and only if } G \text{ contains no } K_3 \text{ or } K_{1,3} \text{ minor.} \]
Theorem (Hogben, van der Holst, 2006)

\[\xi(G) \leq 2 \text{ if and only if } G \text{ contains no minor in the } T_3 \text{ family.} \]

\[T_3 \text{ family} \]
Definition Let $G_i, i = 1, \ldots, k$ be subgraphs of G such that

$$G = \bigcup_{i=1}^{k} G_i$$

and for $i \neq j$, $V_i \cap V_j = \{v\}$.

Then G is called the 1-sum at v of $G_i, i = 1, \ldots, k$.

Theorem (Barioli, Fallat, Hogben, 2004)

Let G be the 1-sum at v of graphs G_1, \ldots, G_k. Then

$$\sum_{i=1}^{k} M(G_i - v) - 1 \leq M(G) \leq \sum_{i=1}^{k} M(G_i - v) + 1.$$

There is an exact formula for the computation of M of a 1-sum in terms of the pieces.
Theorem (Barioli, Fallat, Hogben, 2005)

Let G be 1-sum at v of graphs G_1, \ldots, G_k. Then

$$\max_{i=1}^k \xi(G_i) \leq \xi(G) \leq \max_{i=1}^k \xi(G_i) + 1.$$

Note: For a 1-sum,

$$\mu(G) = \max_{i=1}^k \mu(G_i) \text{ and } \nu(G) = \max_{i=1}^k \nu(G_i).$$
ξ and minimum rank

Example

The graph G
P_4 is an induced subgraph
K_4 is a minor

$3 = \text{mr}(P_4) \leq \text{mr}(G)$.
$3 = \xi(K_4) \leq M(K_4) \leq M(G) = 6 - \text{mr}(G) \leq 6 - 3$.
So $\text{mr}(G) = 3$.

