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Abstract

For a graph G of order n, the maximum nullity of G is defined to be the largest possible
nullity over all real symmetric n × n matrices A whose (i, j)th entry (for i 6= j) is nonzero
whenever {i, j} is an edge in G and is zero otherwise. Maximum nullity and the related
parameter minimum rank of the same set of matrices have been studied extensively. A new
parameter, maximum generic nullity, is introduced. Maximum generic nullity provides insight
into the structure of the null-space of a matrix realizing maximum nullity of a graph. It is
shown that maximum generic nullity is bounded above by edge connectivity and below by
vertex connectivity. Results on random graphs are used to show that as n goes to infinity
almost all graphs have equal maximum generic nullity, vertex connectivity, edge connectivity,
and minimum degree.
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1 Introduction

The (real symmetric) minimum rank problem for a simple graph asks us to determine the minimum
rank among real symmetric matrices whose zero-nonzero pattern of off-diagonal entries is described
by a given simple graph G, or equivalently to determine the maximum nullity (or maximum
multiplicity of an eigenvalue) among the same family of matrices.

All graphs discussed in this paper are simple, meaning no loops or multiple edges, undirected,
finite, and have nonempty vertex sets. The order of a graph G, denoted |G|, is the number of vertices
of G. The set of n × n real symmetric matrices will be denoted by Sn. For A ∈ Sn, the graph of
A, denoted G(A), is the graph with vertices {1, . . . , n} and edges {{i, j} : aij 6= 0, 1 ≤ i < j ≤ n}.
Note that the diagonal of A is ignored in determining G(A). The set of real symmetric matrices of
a graph G is S(G) = {A ∈ Sn : G(A) = G}. The minimum rank of a graph G is

mr(G) = min{rank(A) : A ∈ S(G)}.

The maximum nullity of G is

M(G) = max{null(A) : A ∈ S(G)}
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where null(A) is the dimension of the null space, ker(A), of A. Clearly M(G) + mr(G) = |G|. If
A ∈ S(G) and α ∈ R, then A + αI ∈ S(G), so the maximum multiplicity of any eigenvalue is
the same as maximum multiplicity of eigenvalue 0, i.e., the maximum nullity. See [4] for a survey
of known results and discussion of the motivation for the minimum rank problem; an extensive
bibliography is also provided there.

If W,U ⊆ {1, 2, . . . , n} and B ∈ Sn, then B[W,U ] denotes the submatrix of B having rows
indexed by W and columns indexed by U . In case W = U , this is a principal submatrix and is
denoted by B[W ]; the complementary principal submatrix obtained from B by deleting the rows
and columns indexed by W is denoted B(W ). In the special case when W = {k}, we use B(k) to
denote B(W ).

A graph G′ = (V ′, E′) is a subgraph of graph G = (V,E) if V ′ ⊆ V,E′ ⊆ E. The subgraph
G[W ] of G = (V,E) induced by W ⊆ V is the subgraph with vertex set W and edge set
{{i, j} ∈ E | i, j ∈ W}; G(W ) is used to denote G[V \ W ], obtained from G by deleting all the
vertices in W and all edges incident with these vertices. This follows the notational convention in
the minimum rank literature. In graph theory G(W ) is usually denoted by G−W . If S ⊆ E, the
subgraph G − S is the subgraph obtained by deleting the edges in S, i.e., the graph with vertex
set V and edge set E \ S. A path on n vertices, a cycle on n vertices, and a complete graph on n
vertices will be denoted by Pn, Cn, and Kn, respectively.

A graph is connected if there is a path from any vertex to any other vertex. A component of a
graph is a maximal connected subgraph. A set W of vertices of G is a separating set or vertex cut if
G(W ) has more than one component. The vertex connectivity of G, denoted κv(G) is the minimum
size of a separating set of G. A set S of edges of a graph G (with |G| > 1) is a disconnecting set if
G− S has more than one component. The edge connectivity of G, denoted κe(G) is the minimum
size of a disconnecting set of G. Given W,U ⊂ V (G), the set of edges of G having one endpoint in
W and the other in U is denoted [W,U ]. An edge cut is a set of edges of the form [W,V (G) \W ]
for some W ⊂ V (G). Every edge cut is a disconnecting set but not every disconnecting set is an
edge cut. However, a minimum disconnecting set (i.e., a subset S of edges such that G − S is
disconnected and |S| = κe(G)) is an edge cut (cf. [11, p. 152]).

The degree of a vertex is the number of edges incident with the vertex, and the minimum degree
over all vertices of a graph G will be denoted by δ(G). It is known that

κv(G) ≤ κe(G) ≤ δ(G).

and these inequalities can be strict (e.g., see [11, pp. 152–153]).
A n×k real matrix X is generic if every square submatrix of X is nonsingular. A generic matrix

could be called a totally nonsingular in analogy with the definition of a totally positive matrix as
a matrix all of whose minors are positive. Clearly a totally positive matrix is generic. Notice that
any submatrix of a generic matrix is generic. The generic nullity of a nonzero matrix A ∈ Rn×n is

GN(A) = max{k : X ∈ Rn×k, AX = 0, and X is generic}

(the generic nullity of an n× n zero matrix is n). The maximum generic nullity of a graph G is

GM(G) = max{GN(A) : A ∈ S(G)}.

The maximum generic nullity of a graph can be strictly less than the maximum nullity. In this
case, the null space of a matrix of maximum nullity is often highly structured, as in Example 1.1
below.

Example 1.1. Let G = G130 be the graph shown in Figure 1 (the numbering of graphs is taken
from [10]). Since G can be covered by two copies of K3 and one K2, mr(G) ≤ 3 and since G has
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Figure 1: The graph G = G130 in Example 1.1

an induced P4, mr(G) ≥ 3. Thus M(G) = 6− 3 = 3.
We assume there is a generic 6× 2 matrix X =

[
x1 x2

]
whose columns xi are in the nullspace

of A ∈ S(G) and derive a contradiction, thus showing that GM(G) = 1. The nonzero pattern of
A ∈ S(G) is 

? ∗ ∗ 0 0 0
∗ ? ∗ 0 0 0
∗ ∗ ? ∗ 0 0
0 0 ∗ ? ∗ ∗
0 0 0 ∗ ? ∗
0 0 0 ∗ ∗ ?

 ,

where ∗ denotes a nonzero entry and ? denotes an entry about which nothing is known. Columns
2, 3 and 4 (and columns 3, 4, and 5) are clearly independent.

If rank(A) = 3 then the first two columns are linearly dependent and the last two columns
are linearly dependent. So there are nonzero vectors in the null space of A of the forms y =
[∗, ∗, 0, 0, 0, 0]T and z = [0, 0, 0, 0, ∗, ∗]T . Suppose that ax1 + bx2 + cy + dz = 0. Then

X[{3, 4}, {1, 2}]
[

a
b

]
=

[
0
0

]
.

Since X is generic, a = b = 0, and it follows that c = d = 0.
If rank(A) = 4 then we claim that either the first two columns are linearly dependent or the

last two columns are linearly dependent; assume the first case. Then there there is a nontrivial
linear combination of the first two columns which is equal to zero, and hence a nonzero vector in
the null space having all the last four entries 0. This vector is independent of x1 and x2, and again
a contradiction is obtained. To establish the claim, note first that if the first four columns of A
are dependent, then the first two columns are necessarily dependent. If the first four columns are
independent, then the first four rows are also independent (since A is symmetric). In this case, in
order to have rank(A) = 4, the last two rows must be in the span of the first four, forcing the last
two columns to be dependent. This establishes the claim and completes the argument.

Our main result about maximum generic nullity is that for every connected graph G,

GM(G) ≤ κe(G).

This will be established in Section 2 using methods based on the ideas in Example 1.1. Using the
methods of [1], it is easy to show that GM(G) ≤ δ(G), but we do not include that proof since
κe(G) ≤ δ(G). In Section 4 is shown that for every graph G,

κv(G) ≤ GM(G),

and graph theoretic results are used to show that as n goes to infinity almost all graphs have equal
maximum generic nullity, vertex connectivity, edge connectivity, and minimum degree.
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2 Maximum generic nullity and edge connectivity

A nonzero pattern C = [cij ] is a m×n matrix whose entries cij are elements of {∗, 0}. The number
of ∗ (nonzero entries) in C is denoted by nz(C). Given a pattern C = [cij ], we let Q(C) denote the
set of all matrices A = [aij ] ∈ Rm×n such that aij 6= 0 if and only if cij = ∗. Note that (unlike the
set of symmetric matrices described by a graph), here the diagonal is constrained by the nonzero
pattern. The minimum rank of a nonzero pattern C is

mr(C) = min{rank(A) : A ∈ Q(C)}.

Theorem 2.1. If C is an m×n nonzero pattern that does not have any zero row or zero column,
mr(C) ≥ m + n− nz(C).

Proof. Note that arbitrary permutation of rows or columns of C does not affect mr(C). For fixed
m and n, the proof is by induction on nz(C). The base case is any C (without zero row or column)
such that for every nonzero entry, it is the only nonzero in its row or the only nonzero in its column.

That is, no row and column permutation of C contains a 2 × 2 submatrix
[
∗ ?
∗ ∗

]
. By row and

column permutations, any such a C can be put into the following form:

a1


∗ 0 . . . 0 0 . . . 0 0 . . . 0 . . . 0 . . . 0
...

... . . .
...

...
...

...
...

...
...

...
...

∗ 0 . . . 0 0 . . . 0 0 . . . 0 . . . 0 . . . 0

a2


0 ∗ . . . 0 0 . . . 0 0 . . . 0 . . . 0 . . . 0
...

... . . .
...

...
...

...
...

...
...

...
...

0 ∗ . . . 0 0 . . . 0 0 . . . 0 . . . 0 . . . 0
...

as


0 0 . . . ∗ 0 . . . 0 0 . . . 0 . . . 0 . . . 0
...

... . . .
...

...
...

...
...

...
...

...
...

0 0 . . . ∗ 0 . . . 0 0 . . . 0 . . . 0 . . . 0
0 0 . . . 0 ∗ . . . ∗ 0 . . . 0 . . . 0 . . . 0
0 0 . . . 0 0 . . . 0 ∗ . . . ∗ . . . 0 . . . 0
...

... . . .
...

...
...

...
...

...
...

...
...

...
...

0 0 . . . 0 0 . . . 0 0 . . . 0 . . . ∗ . . . ∗︸ ︷︷ ︸
b1

︸ ︷︷ ︸
b2

︸ ︷︷ ︸
bt

nz(C) = a1 + · · ·+ as + b1 + · · ·+ bt

m = a1 + · · ·+ as + t

n = s + b1 + · · ·+ bt

m + n− nz(C) = t + s

= mr(C)

Now assume C contains a 2× 2 submatrix
[
∗ ?
∗ ∗

]
. Consider the nonzero pattern C ′ obtained

from C by replacing one ∗ by 0 so the 2 × 2 submatrix is now
[
∗ ?
0 ∗

]
. Then by the induction
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hypothesis applied to C ′,

mr(C) ≥ mr(C ′)− 1 ≥ m + n− nz(C ′)− 1 = m + n− (nz(C)− 1)− 1 = m + n− nz(C).

Theorem 2.2. If G is connected, then GM(G) ≤ κe(G).

Proof. Let S be a minimum disconnecting set for G with |S| ≥ 1 (so κe(G) = |S|). Since S is an
edge cut, S = [W,W ] for some W ⊂ V . Let W1 = W and W2 = W . Number the vertices of G
so that the vertices of W1 are 1, . . . , |W |1, all vertices of W1 incident with an edge of S are last
among the vertices of W1, and all vertices of W2 incident with an edge of S are first among the
vertices of W2.

Let A ∈ S(G) be such that GN(A) = GM(G). Let Ai = A[Wi]. Then A can be partitioned as

A =

 Â1 0 0
D C 0
F E Â2


where A1 =

[
Â1

D

]
, A2 =

[
E Â2

]
, C is d × e, Â1 is (n1 − d) × n1 and Â2 is n2 × (n2 − e). Note

that Â1 or Â2 may be empty. Let ri = rank(Âi). Then

rank(A) ≥ r1 + mr(C) + r2

≥ r1 + r2 + d + e− nz(C)
= r1 + r2 + d + e− κe(G).

Now consider the vectors that must be in ker(A). Since rank(Â2) = r2, there exist k2 =

n2−e−r2 independent vectors ŷi ∈ Rn2−e such that Â2ŷi = 0. If we let yi =

 0
0
ŷi

 (where the first

zero vector is of length n1 − d and the second is of length d + e), then yi ∈ ker(A), i = 1, . . . , k2.
Since rank(Â1) = r1, there exist k1 = n1 − d − r1 independent vectors x̂i ∈ Rn1−d such that

x̂T
i Â1 = 0. Since A is symmetric, if we let xi =

x̂i

0
0

 (where the first zero vector is of length d + e

and the second is of length n2 − e), then xi ∈ ker(A), i = 1, . . . , k1.
Let n = n1 + n2 be the number of vertices of G. Extend {x1, . . . , xk1 , y1, . . . yk2} to a basis

{x1, . . . , xk1 , y1, . . . yk2 , z1, . . . , zk} for ker(A). Then

null(A) = k1 + k2 + k = n− d− e− r1 − r2 + k.

Adding this to the inequality rank(A) ≥ r1 + r2 + mr(C) gives

n ≥ n− d− e + k + mr(C).

Since mr(C) ≥ 1, we conclude that k ≤ d + e− 1 .
Let g = GM(G) and let X be a generic n× g matrix in ker(A). Then

X =
[

x1 · · · xk1 y1 · · · yk2 z1 · · · zk

]
R

for some n × g matrix R. Let X̂ be the matrix obtained by deleting the first n1 − d rows and
the last n2 − e rows of X and define ẑi (i = 1, . . . , k), to be the vectors obtained by deleting the
first n1 − d and the last n2 − e entries of zi. Then X̂ = [0 · · · 0 ẑ1 · · · ẑk]R. Since X̂ is a generic
(d + e) × g matrix, min{d + e, g} = rank X̂ ≤ rank[ẑ1 · · · ẑk] = k. Since d + e > k, g ≤ k . Then
null(A) = n−d−e−r1−r2+k ≥ n−d−e−r1−r2+g. Adding this to rank A ≥ r1+r2+d+e−κe(G),
we have n ≥ n + g − κe(G), and GM(G) = g ≤ κe(G).
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It is possible to have GM(G) < κe(G), as the next example shows.

Example 2.3. The graph H shown in Figure 2, has GM(G) = 2 < 3 = κe(G). We assume there
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7

Figure 2: The graph H in Example 2.3

is a generic 8 × 3 matrix X =
[
x1 x2 x3

]
whose columns xi are in the nullspace of A ∈ S(G)

and derive a contradiction. The nonzero pattern of A ∈ S(G) is

A =



? ∗ ∗ ∗ 0 0 0 0
∗ ? ∗ ∗ 0 0 0 0
∗ ∗ ? ∗ ∗ 0 0 0
∗ ∗ ∗ ? ∗ ∗ 0 0
0 0 ∗ ∗ ? ∗ ∗ ∗
0 0 0 ∗ ∗ ? ∗ ∗
0 0 0 0 ∗ ∗ ? ∗
0 0 0 0 ∗ ∗ ∗ ?


.

Columns 4, 5, 6, and 7, and columns 2, 3, 4 and 5 are clearly independent. If rank(A) = 4 then
the first two columns are linearly dependent and the last two columns are linearly dependent. As
in Example 1.1 a contradiction is obtained. So assume rank(A) = 5.

5 = rank(A) ≥ rank(A[{1, 2}, {1, 2, 3, 4}) + rank(A[{3, 4}, {5, 6}) + rank(A[{5, 6, 7, 8}, {7, 8}]).

Since rank(A[{3, 4}, {5, 6}) = 2, either the first two rows are linearly dependent or the last
two columns are linearly dependent. In the former case, since A is symmetric, the first two
columns are linearly dependent, and thus there is a vector in the null space of A of the form
y = [∗, ∗, 0, 0, 0, 0, 0, 0]T . But since X is generic, there is no relation among the columns of X, so
y is independent of x1, x2, x3, and a contradiction is obtained.

3 Maximum generic nullity and Vandermonde matrices

In this section we develop techniques for computation of maximum generic nullity and show that
GM(G) = κe(G) = δ(G) for all connected graphs of order at least two and at most five.

When constructing a n× k matrix to show that the generic nullity of A is at least k, the next
proposition shows that it is enough to construct Y such that AY = 0 and every k × k submatrix
of Y is nonsingular.

Proposition 3.1. For a real n× k matrix Y with n ≥ k, if all k × k submatrices are nonsingular
then there exists a real nonsingular k × k matrix B such that X = Y B is generic.

Proof. Given Y = [yij ], let F be the field extension of the rational numbers generated by all the
yij . Choose k2 real numbers βij that are algebraically independent over F and let B = [βij ]. Now
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consider an r × r submatrix X[α, β] where 1 ≤ r ≤ k. By the Cauchy-Binet formula,

det X[α, β] =
∑

γ

det Y [α, γ] det B[γ, β]

where the sum is over all subsets of {1, 2, . . . , k} of cardinality r. Since each k× k submatrix of Y
is invertible, some Y [α, γ] is nonsingular. Thus detX[α, β] is a nonzero polynomial over F in the
βij ’s. Since the βij ’s are algebraically independent, det X[α, β] is nonzero.

In the study of maximum nullity, it is customary to consider only connected graphs, since if the

connected components of G are Gi, i = 1, . . . , h, then M(G) =
h∑

i=1

M(Gi). We can also reduce the

study of maximum generic nullity to the study of the connected components, but with a different
relationship.

Proposition 3.2. If Gi, i = 1, . . . , h are connected disjoint graphs and |Gi| ≥ 2 for i = 1, . . . , h,
then

GM(
h⋃

i=1

Gi ∪mK1) ≤ min{GM(Gi) : i = 1, . . . , h}.

Proof. Number the vertices of G1 first, then G2, etc. Let ni = |Gi|. If A ∈ S(G), then
A = A1 ⊕ · · · ⊕ Ah ⊕ D, where Ai ∈ S(Gi) and D is diagonal. In fact, order for A to have a
generic null vector, D = 0. Let X be a generic n× k matrix such that AX = 0 and partition X as

X =


X1

...
Xh

Xh+1

 where there are ni rows in Xi and m rows of Xh+1. Then AiXi = 0 for i = 1, . . . , h.

Since any nonempty submatrix of a generic matrix is generic and Ai 6= 0,

k ≤ min{GN(Ai) : i = 1 . . . , h} ≤ min{GM(Gi) : i = 1, . . . , h}.

One might expect that the inequality in Proposition 3.2 should be an equality (and we do
not know of any cases of strict inequality). One way to establish equality for many graphs is
through the use of Vandermonde matrices. Given k real numbers α1, . . . , αk we define the n × k
Vandermonde matrix Vn(α1, . . . , αk) = [αi−1

j ]. If 0 < α1 < · · · < αk, then Vn(α1, . . . , αk) is totally
positive [3, p. 21-3]. Given k real numbers α1, . . . , αk and n nonnegative integers m1, . . . ,mn, we
define the n× k generalized Vandermonde matrix V (α1, . . . , αk;m1, . . . ,mn) = [αmi

j ]. A matrix is
a generalized Vandermonde matrix if and only if it is submatrix of a (larger) Vandermonde matrix.
Thus, if 0 < α1 < · · · < αk and 0 ≤ m1 < · · · < mn, then V (α1, . . . , αk;m1, . . . ,mn) = [αmi

j ] is
totally positive and hence generic.

When trying to exhibit a generic matrix of maximum nullity it is often convenient to search for
a Vandermonde matrix, and we will see that for every graph G of order n ≤ 5 it is always possible
to use the Vandermonde matrix Vn(1, 2, . . . , GM(G)) as the generic matrix.

Proposition 3.3. Let G = ∪h
i=1Gi where ni = |Gi| ≥ 2 but the Gi are not assumed disjoint.

If there exist positive real numbers α1 < · · · < αk such that for every generalized Vandermonde
matrix Vi = V (α1, . . . , αk;m1, . . . ,mni) there exists Ai ∈ S(Gi) such that AiVi = 0, then

GM(G) ≥ min{GM(Gi) : i = 1, . . . , h}.
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Proof. If the vertices of Gi are v1, . . . , vni
∈ {1, . . . , n}, choose Ai ∈ S(Gi) such that AiVi = 0 for

Vi = V (α1, . . . , αk; v1 − 1, . . . , vni
− 1). Let Âi be the n × n matrix obtained by embedding Ai

in the appropriate place in an n × n matrix. Then ÂiV = 0 for V = Vn(α1, . . . , αk). It is then
possible to choose real numbers β1, . . . , βh so that for all r and s the (r, s)-entry of A =

∑h
i=1 βiÂi

is 0 if and only if the (r, s)-entry of each Âi is 0. Thus, A ∈ S(G) and AV = 0.

Corollary 3.4. Let Gi, i = 1, . . . , h be connected disjoint graphs and |Gi| ≥ 2 for i = 1, . . . , h,
If there exist positive real numbers α1 < · · · < αk such that for every generalized Vandermonde
matrix Vi = V (α1, . . . , αk;m1, . . . ,mni

) there exists Ai ∈ S(Gi) such that AiVi = 0, then

GM(G) = min{GM(Gi) : i = 1, . . . , h}.

We now establish the hypotheses of Proposition 3.3 for some families of graphs.

Proposition 3.5. For any generic X n × (n − 1) matrix, there exist a matrix A ∈ S(Kn) such
that AX = 0. In particular, for any nonnegative integers m1 ≤ · · · ≤ mn, there exists A ∈ S(Kn)
such that A V (1, 2, . . . , n− 1;m1, . . . ,mn) = 0. Moreover, GM(Kn) = n− 1 for n ≥ 2.

Proof. Since X is n× (n− 1), there exists a nonzero vector a ∈ Rn such that aT X = 0. Since X
is generic, all entries of a are nonzero. Let A = aaT .

Corollary 3.6. If G is Kn with an edge deleted, then GM(G) = M(G) = n− 2.

Proof. G is the union of two copies of Kn−1.

Proposition 3.7. GM(Cn) = M(Cn) = 2. Furthermore, for α > 1 and any nonnegative integers
m1 ≤ · · · ≤ mn, there exists A ∈ S(Cn) such that A V (1, α;m1, . . . ,mn) = 0.

Proof. Let

ai,i+1 =
1

αmi − αmi+1
and aii =

αmi+1 − αmi−1

(αmi+1 − αmi)(αmi − αmi−1)
.

where the index n + 1 is interpreted as 1 and 0 is interpreted as n.

Corollary 3.8. If G is a union of cycles then GM(G) ≥ 2, with equality if the union is disjoint.
If G is a union of copies of Kr then GM(G) ≥ r − 1 with equality if the union if disjoint. In all
these cases, maximum generic nullity can be realized by a matrix having a Vandermonde matrix as
a generic null space matrix.

Corollary 3.9. If G is connected and 2 ≤ |G| ≤ 5, then GM(G) = κe(G) = δ(G) and maximum
generic nullity can be realized by a matrix having a Vandermonde matrix as a generic null space
matrix.

Proof. Any graph having δ(G)=1 satisfies 1 = GM(G) = κe(G) = δ(G). Every connected graph of
order at most 5 that has δ(G) = 2 is a union of cycles and thus has 2 = GM(G) = κe(G) = δ(G).
A connected graph having order 5 or less and δ(G) = 3 is K4 or is one of those shown in Figure 3.

G51 is K5 with an edge deleted and is thus a union of two copies of K4. Let

A =



− 20736
23375

36
25 − 6

11 − 36
935

66
2125

36
25 − 12

5 1 0 − 1
25

− 6
11 1 − 6

11
1
11 0

− 36
935 0 1

11 − 12
187

1
85

66
2125 − 1

25 0 1
85 − 6

2125


.

Then A ∈ S(W5) and A V5(1, 2, 3) = 0. Order 5 and δ(G) = 4 implies G is K5.
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Figure 3: W5 = G50 G51

4 Maximum generic nullity and vertex connectivity

In the section we show that vertex connectivity bounds maximum generic nullity from below, and
give an example where these two parameters differ.

For a graph G, an orthogonal representation of G of dimension d (or in Rd) is a set of vectors
in Rd, one corresponding to each vertex, with the property that if two vertices are nonadjacent,
then their corresponding vectors are orthogonal. Trivially, every graph has an orthogonal represen-
tation in any dimension (by associating the zero vector with every vertex). A faithful orthogonal
representation of G of dimension d is an orthogonal representation such that such that if two
vertices are adjacent, then their corresponding vectors are not orthogonal. In the minimum rank
literature, the term “orthogonal representation” is often used for what is here called a faithful
orthogonal representation, following the notation of [7]. An orthogonal representation of G in Rd

is in general-position if every subset of d vectors is linearly independent. Let mr+(G) denote the
minimum rank among all symmetric positive semidefinite matrices A such that G(A) = G, and
let M+(G) denote the maximum nullity among all such matrices. Clearly mr+(G) ≤ mr(G) and
M+(G) ≥ M(G). It is well known (and easy to see) that every faithful orthogonal representation
of dimension d gives rise to a positive semidefinite matrix of rank d and vice versa.

The following result of Lovász, Saks and Schrijver [7], [8] relates vertex connectivity to maximum
nullity. We use the version stated by van der Holst in [6].

Theorem 4.1. [6, Theorem 3], [7, Corollary 1.4] For a graph G with n vertices, G is (n − d)-
connected if and only if G has a general-position faithful orthogonal representation in Rd.

Corollary 4.2. For any graph G,
κv(G) ≤ GM(G).

Proof. Let G be a graph of order n and let k = κv(G). By Theorem 4.1, there exists a general-
position faithful orthogonal representation in Rn−k. Let the vector representing vertex vi be denoted
by bi, and define B = [b1, . . . , bn] and A = BT B. Then A ∈ S(G) and rank(A) = n − k. Let
x1, . . . , xk be a basis for ker(A) = ker(B) and define X = [x1, . . . , xk]. We claim that every k × k
submatrix of X is nonsingular, which implies k ≤ GM(G) by Proposition 3.1.

Suppose not. Then there exists a set of indices i1, . . . , ik such that X[{i1, . . . , ik}, {1, . . . , k}]
is singular. So there exists a nonzero vector w = [0, . . . , 0, wi1 , 0, . . . , 0, wik

, 0, . . . , 0]T ∈ Rn such
that wT X = 0. Since X ∈ Rn×k, BX = 0, rank(B) = n− k, and rank(X) = k, the rows of B are a
basis for the right null space of X. Thus there exists a vector u ∈ Rn−k such that uT B = wT . Let
R = {1, . . . , n}\{i1, . . . , ik}, so wj = 0 for j ∈ R and |R| = n−k. Thus uT B[{1, . . . , n−k}, R] = 0T .
Since B[{1, . . . , n− k}, R] is nonsingular, uT = 0T , contradicting uT B = wT 6= 0T .

The next example shows that it is possible to have κv(G) < GM(G).

Example 4.3. The bowtie G42, shown in Figure 4, has GM(G42) = κe(G42) = 2 > 1 = κv(G42).
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Figure 4: The graph G = G42 in Example 4.3

Bollobás and Thomason [2] proved that for a random graph G on n vertices having edge
probability p, the probability that κv(G) < δ(G) goes to 0 as n goes to infinity. This result is very
general and does not require p to be fixed. A simplification of the Bollobás and Thomason proof
for fixed p is given in [5]. Choosing a graph at random from all graphs of order n is the same
as choosing a random graph of order n with edge probability p = 1/2. Thus Theorem 2.2 and
Corollary 4.2, together with the Bollobás and Thomason result, show that as n goes to infinity,
almost all graphs have

κv(G) = GM(G) = κe(G) = δ(G).

Acknowledgement. The authors thank the referees for their helpful comments.
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