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Abstract

For a graph G of order n, the minimum rank of G is defined to be the smallest possible
rank over all real symmetric n × n matrices A whose (i, j)th entry (for i "= j) is nonzero
whenever {i, j} is an edge in G and is zero otherwise. We prove an upper bound for minimum
rank in terms of minimum degree of a vertex is valid for many graphs, including all bipartite
graphs, and conjecture this bound is true over for all graphs, and prove a related bound for all
zero-nonzero patterns of (not necessarily symmetric) matrices. Most of the results are valid
for matrices over any infinite field, but need not be true for matrices over finite fields.

1 Introduction

The (symmetric) minimum rank problem for a simple graph asks us to determine the minimum
rank among real symmetric matrices whose zero-nonzero pattern of off-diagonal entries is described
by a given simple graph G. The solution to the minimum rank problem is equivalent to the
determination of the maximum multiplicity of an eigenvalue among the same family of matrices.

This problem, and its extension to symmetric matrices over other fields, have received consid-
erable attention recently. See [7] for a survey of known results and discussion of the motivation for
the minimum rank problem; an extensive bibliography is also provided there. The AIM Minimum
Rank Graph Catalog [2] is available on-line and is updated routinely.

A graph will be denoted by G = (V (G), E(G)). All graphs discussed in this paper are simple,
meaning no loops or multiple edges, undirected, and have finite nonempty vertex sets. The degree
of a vertex is the number of edges incident with the vertex, and the minimum degree over all
vertices of a graph G will be denoted by δ(G). A graph is connected if there is a path from any
vertex to any other vertex. A component of a graph is a maximal connected subgraph. A cut-vertex
of a connected graph is a vertex whose deletion disconnects G.

All fields discussed are infinite except when a specific finite field is mentioned by name; F de-
notes an infinite field, Mn(F ) denotes the n×n matrices over F , and Sn(F ) denotes the symmetric
n× n matrices over F .
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For A ∈ Sn(F ), the graph of A, denoted G(A), is the graph with vertices {1, . . . , n} and edges
{{i, j}| aij $= 0 and i $= j}. Note that the diagonal of A is ignored in determining G(A). The set
of symmetric matrices of graph G over field F is

SF
G = {A ∈ Sn(F ) : G(A) = G}.

We will be interested in minimum rank over a variety of fields and will also need to consider
the minimum rank of a family of not-necessarily symmetric matrices. We adopt the perspective
that we are finding the minimum of the ranks of the matrices in a given family F of matrices, and
define

mr(F) = min{rank(A) : A ∈ F}.
Note that what we are denoting by mr(SR

G) is commonly denoted by mr(G) in papers that study
only the minimum rank of the real symmetric matrices described by a graph, and mr(SF

G ) is
sometimes denoted by mr(F,G) or mrF (G). If G is the union of disjoint components Gi, i = 1, . . . , t,
then mr(SF

G ) =
∑t

i=1 mr(SF
Gi

), so it is customary to restrict consideration to connected graphs.
The nullity (or corank) of an n × n matrix A is the dimension of the kernel of A. Let M(F)

denote the maximum nullity (or maximum corank) among matrices in F . For F ⊆ Mn(F ), it is
immediate that

mr(F) + M(F) = n. (1)

The maximum nullity is, of course, the maximum geometric multiplicity of eigenvalue 0, but
the geometric multiplicity may be less than the algebraic multiplicity (except for real symmetric
matrices). If the family allows translation by an arbitrary scalar multiple of the identity matrix,
then the maximum geometric multiplicity of any eigenvalue is the same. For real symmetric
matrices, where geometric and algebraic multiplicity are the same, the minimum rank problem
is often studied from the perspective of the problem of determining the maximum eigenvalue
multiplicity of (any) eigenvalue.

It is clear from Equation (1) that a lower bound on M(F) gives rise to an associated upper
bound on mr(F) and an upper bound on M(F) gives rise to an associated lower bound on mr(F)
(and vice versa). One strategy for computation of minimum rank, which was used extensively in
[1], is to obtain equal upper and lower bounds for mr(SR

G) (or equivalently, M(SR
G)).

We are interested in the relationship between the minimum degree δ(G) and the maximum
nullity of symmetric matrices, and make the following conjecture.

Conjecture 1.1. For any graph G and infinite field F ,

δ(G) ≤ M(SF
G ), (2)

or equivalently,
mr(SF

G ) ≤ |G|− δ(G). (3)

It is clear that the bounds in Conjecture 1.1 are satisfied with equality for the complete graph
Kn, the path Pn, the cycle Cn, and any graph having a vertex of degree one. We will establish
the conjecture for a variety of graphs, including small graphs, more than twenty families of graphs,
and all bipartite graphs. We will also establish requirements on a minimal counterexample, should
one exist.

Note that Conjecture 1.1 assumes the field is infinite. The bounds in Conjecture 1.1 can fail
for finite fields as seen in the next example.

Example 1.2. [1, Example 3.4]

mr(SZ2
K3!K2

) = 4 > 3 = 6− 3 = |K3 ! K2|− δ(K3 ! K2) = mr(SR
K3!K2

).

2



The conjecture, if established, provides an upper bound for minimum rank. Such a bound can
sometimes be used in conjunction with a lower for minimum rank to determine the minimum rank.

Several lower bounds for minimum rank are known. An upper bound for M(SF
G ), which yields

an associated lower bound for mr(SF
G ), is the parameter Z(G) introduced in [1]. If G is a graph

with each vertex colored either white or black, u is a black vertex of G, and exactly one neighbor
v of u is white, then change the color of v to black (this is called the color-change rule). Given
a coloring of G, the derived coloring is the (unique) result of applying the color-change rule until
no more changes are possible. A zero forcing set for a graph G is a subset of vertices Z such that
if initially the vertices in Z are colored black and the remaining vertices are colored white, the
derived coloring of G is all black. Z(G) is the minimum of |Z| over all zero forcing sets Z ⊆ V (G).

Lower bounds

1. [1] M(SF
G ) ≤ Z(SF

G ) and thus |G|− Z(G) ≤ mr(SF
G ).

2. [4] The minimum rank of any induced subgraph (for which the minimum rank is known)
provides a lower bound on minimum rank. In particular, if p is the length (= # of edges) of
the longest induced path of G, then p ≤ mr(SF

G ).

Another application of Conjecture 1.1 is to the sum of the minimum ranks of a graph and its
complement. At the American Institute of Mathematics workshop “Spectra of Families of Matrices
described by Graphs, Digraphs, and Sign Patterns,” the following question was asked:

Question 1.3. [5, Question 1.16] How large can mr(G) + mr(G) be?

It was noted there that for the few graphs for which the minimum rank of both the graph and
its complement was known,

mr(G) + mr(G) ≤ |G|+ 2

and equality in this bound is achieved by a path. It was also noted [5, Observation 1.15] that if
Conjecture 1.1 is true, a consequence would be that for any regular graph G,

mrF (G) + mrF (G) ≤ |G|+ 1.

2 Minimum rank of combinatorially symmetric matrices de-
scribed by a graph

To establish the bounds on the minimum rank of bipartite graphs, we will need to consider not
necessarily symmetric matrices. A zero-nonzero pattern is an m× n matrix with entries in {0, ∗},
where ∗ designates a nonzero entry. A matrix A is combinatorially symmetric if aij $= 0 if and
only if aji $= 0. A combinatorially symmetric matrix has a symmetric zero-nonzero pattern. For
such a matrix, the graph of A, denoted G(A), is the graph with vertices {1, . . . , n} and edges
{{i, j}| aij $= 0 and i $= j}. The set of matrices of graph G over field F is

MF
G = {A ∈ Mn(F ) : A is combinatorially symmetric and G(A) = G}.

Clearly Sn(F ) ⊆ Mn(F ), SF
G ⊆ MF

G, and mr(MF
G) ≤ mr(SF

G ). It is possible to have strict
inequality, as the next example shows.
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Example 2.1. Let K3,3,3 be the complete tripartite graph on three sets of three vertices each.

Let A =




0 J J
−J 0 −J
−J J 0



 , where J =




1 1 1
1 1 1
1 1 1



 . Then (with A ∈ R9×9), rank(A) = 2 and

A ∈MR
K3,3,3

, so mr(MR
K3,3,3

) ≤ 2 < 3 = mr(SR
K3,3,3

), with the latter equality established in [4].

In this section we establish the bound analogous to (3) in Conjecture 1.1 for minimum rank of
matrices that are not required to be symmetric, i.e. we show

mr(MF
G) ≤ |G|− δ(G).

In Section 3 we then use this result to establish a better bound than (3) for minimum rank of
symmetric matrices described by a bipartite graph (Theorem 3.1).

Observation 2.2. Many properties of minimum rank of symmetric matrices of a graph extend to
not-necessarily symmetric matrices, even without the assumption that the field is infinite. These
include:

1. If the connected components of G are G1, . . . , Gt, then

mr(MF
G) =

t∑

i=1

mr(MF
Gi

).

2. If G′ is an induced subgraph of G then mr(MF
G′) ≤ mr(MF

G).

3. mr(MF
G) ≤ |G|− 1.

4. For the path on n vertices, mr(MF
Pn

) = n− 1 = mr(SF
Pn

).

5. If mr(MF
G) = |G|− 1, then G = P|G|.

(If mr(MF
G) = |G|− 1, then |G|− 1 = mr(SF

G ) and mr(SF
G ) = |G|− 1 implies G = P|G|.)

6. For a connected graph G of order n > 1, mr(MF
G) = 1 if and only if G = Kn if and only if

mr(SF
G ) = 1.

7. For the cycle on n vertices, mr(MF
Cn

) = n− 2.

8. If T is a tree, then mr(SF
T ) = mr(MF

T ).
(If T is a tree and A ∈MF

T , then there exist nonsingular diagonal matrices D1 and D2 such
that B = D1AD2 has all off-diagonal entries equal to 0 or 1, and so B ∈ SF

T . The technique
used to choose the diagonal matrices is well known - see for example [6].)

9. If mr(MF
G) ≤ 2, then G does not contain as an induced subgraph any of the graphs P4, Dart,

! (shown in Figure 1 in Section 4 below).
(Although not necessarily symmetric matrices were not discussed in [4], it is clear from the
argument in that paper that mr(MF

G) = 3 for any field and for G any of P4, Dart, !.)

The following two lemmas are standard linear algebra results.

Lemma 2.3. Let C be a k × n matrix over an infinite field F such that every k × k submatrix of
C is nonsingular. Then x is the zero-nonzero pattern of a vector v ∈ Fn such that Cv = 0 if and
only if there are at least k + 1 entries ∗ in x.
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Lemma 2.4. Let k and n be integers with k < n and let F be an infinite field. Then there exists
a k × n matrix C over F such that every k × k submatrix of C is nonsingular.

Proposition 2.5. Let Z be an n × m zero-nonzero pattern such that each column of Z has at
least r nonzero entries. Then over an infinite field there exists realization A of Z of rank at most
n − r + 1. Moreover, if Z is symmetric, then A can be chosen so that if i $= j and zij = ∗, then
aij + aji $= 0.

Proof. Let C be a (r − 1) × n matrix over F such that every (r − 1) × (r − 1) submatrix of F
is nonsingular; its existence follows from Lemma 2.4. In particular, the rows of C are linearly
independent. By Lemma 2.3, for each j there exists a vector aj in the null space of C whose
pattern is that of the jth column of Z. Hence, A = [a1, a2, . . . , am] is a matrix with zero-nonzero
pattern Z, whose column space is in the nullspace of C. Hence, A has rank at most n− r + 1.

Moreover, for any invertible diagonal matrix D, AD has the same zero-nonzero pattern as A,
and its column space is contained in the nullspace of C. Thus rank(AD) ≤ n − r + 1. As F
is infinite, there exists a D, such that if zij = ∗, then the (i, j) and (j, i)-entries of AD are not
opposites.

Since the minimum number of entries allowed to be nonzero in a column of A is δ(G) + 1, we
have the following corollary.

Corollary 2.6. Let F be an infinite field. For any graph G,

mr(MF
G) ≤ |G|− δ(G). (4)

3 Minimum rank and minimum degree of bipartite graphs

Let G be a bipartite graph having bipartition V (G) = U∪W . Define δW (G) = minw∈W {degG(w)}.
Note δW (G) ≤ |U |.

Let the elements of U be ui, i = 1, . . . , p and the elements of W be wj , j = 1, . . . , q. The p× q
zero-nonzero pattern Z = [zij ] such that zij = ∗ if and only if ui and wj are adjacent in G is the
biadjacency pattern of G for the ordered partition (u1, . . . , up), (w1, . . . , wq).

Theorem 3.1. For any infinite field F and bipartite graph G having bipartition V (G) = U ∪W ,

mr(SF
G ) ≤ 2(|U |− δW (G) + 1) and mr(SF

G ) ≤ 2(|W |− δU (G) + 1). (5)

Proof. Let F be the family of matrices having zero-nonzero pattern described by the biadjacency

pattern Z. If A ∈ SF
G and the diagonal of A is 0, then A =

[
0 B

BT 0

]
where B ∈ F . The minimum

number of nonzero entries of a column of Z is δW (G), so by Proposition 2.5, there exists B ∈ F
such that rank(B) ≤ |U |− δW (G) + 1. Then rank(A) = 2 rank(B) ≤ 2(|U |− δW (G) + 1).

Corollary 3.2. For any infinite field F and bipartite graph G having bipartition V (G) = U ∪W ,
mr(SF

G ) ≤ |G|− δ(G).
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Proof. If δ(G) ≤ 1 then the bound is valid, so we assume δ(G) ≥ 2, and without loss of generality
assume |W |− δU (G) + 1 ≤ |U |− δW (G) + 1. Then

mr(SF
G ) ≤ 2(|W |− δU (G) + 1)

≤ |W |− δU (G) + 1 + |U |− δW (G) + 1
= |G|− δU (G)− δW (G) + 2
≤ |G|− δ(G)− δ(G) + 2
≤ |G|− δ(G)

Note that the bound in Theorem 3.1 is at least as good as that in the preceding corollary
provided δ(G) > 1, and often is much better, as in the case of the complete bipartite graph Kp,q,
for which 2(|U |− δW (G) + 1) = 2(|W |− δU (G) + 1) = 2 = mr(SF

Kp.q
).

4 Minimum rank and minimum degree

We can establish a relationship between δ(G) and Z(G) and use this to show many families of
graphs satisfy Conjecture 1.1.

Proposition 4.1. For any graph G, δ(G) ≤ Z(G).

Proof. Let Z ⊂ V (G) be a minimal zero forcing set (necessarily Z is a proper subset of V (G)).
Then it is necessary that the color-change rule be applied at least once. To apply the color-change
rule it is necessary to have a black vertex with all but one neighbor black. Let the set consisting
of this vertex and its neighbors be denoted by W . Then δ(G) ≤ |W |− 1 ≤ |Z| = Z(G).

In [1] it was shown that M(SR
G) = Z(G) for numerous families of graphs (cf. [1, Table 1]), and

thus by Proposition 4.1, Conjecture 1.1 is true for all these graphs. In fact, Conjecture 1.1 is true
over the real numbers for all graphs listed in the AIM Minimum Rank Graph Catalogs [2].

Next we show that Conjecture 1.1 is true for graphs having extreme minimal degree. We need
an easy lemma.

Lemma 4.2. Let H be an induced subgraph of a graph G. Then δ(G) ≤ |G|− (|H|− δ(H)).

Proof. Since at least |H|− 1− δ(H) edges must be missing (in both G and H) from some vertex
of H,

δ(G) ≤ |G|− 1− (|H|− 1− δ(H)) = |G|− (|H|− δ(H)).

A 2-connected partial linear 2-tree, also called a linear singly edge-articulated cycle graph in
[8], is a “path” of cycles built up one cycle at a time by identifying an edge of a new cycle with an
edge (that has a vertex of degree 2) of the most recently added cycle.

Proposition 4.3. Let G be a graph of order n and let F be an infinite field. If δ(G) ≤ 3 or
δ(G) ≥ |G|− 2 then mr(SF

G ) ≤ |G|− δ(G).

Proof.

• If δ(G) ≤ 1, then obviously mr(SF
G ) ≤ |G|− δ(G).

• If δ(G) = 2 then G $= Pn so mr(SF
G ) ≤ n− 2 = n− δ(G).

• If δ(G) = 3 then G is not a 2-connected partial linear 2-tree (which has minimal degree equal
to 2), so by [8] mr(SF

G ) ≤ n− 3.
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• If δ(G) = n− 1 then G = Kn so mr(SF
G ) = 1 = n− δ(G).

• If δ(G) = n − 2, then Lemma 4.2 assures that G cannot contain as an induced subgraph
H any of the graphs P4, Dart, !, K3,3,3, P3 ∪ 2K3 (see Figure 1), since for these graphs
|H|− δ(H) = 3, 4, 4, 3, 3, respectively. By [4], any graph having mr(SF

G ) > 2 over an infinite
field F must have one of these subgraphs as an induced subgraph, so mr(SF

G ) ≤ 2.

Figure 1: Some forbidden induced subgraphs for mr(SF
G ) ≤ 2

P4 Dart ! K3,3,3 P3 ∪ 2K3

We now turn our attention to determining what properties are required for a minimal coun-
terexample to the conjecture (minimal in the sense that there is no proper induced subgraph that
is a counterexample). The proof of the following result is straightforward.

Proposition 4.4. If δ(SR
G) ≤ M(SR

G) and δ(SR
H) ≤ M(SR

H), then δ(SR
G!H) ≤ M(SR

G!H).

Corollary 4.5. Suppose G is a minimal counterexample to Conjecture 1.1 over the real numbers.
Then G is not a non-trivial Cartesian product.

The next theorem shows that a minimal counterexample cannot have a cut-vertex. In [3] the
rank-spread of G at vertex v was defined as rv(G) = mr(G)−mr(G− v), and it was shown that

mr(G) =
h∑

1

mr(Gi − v) + min

{
h∑

1

rv(Gi), 2

}
. (6)

where the ith component of G− v is Hi and Gi is the subgraph induced by {v} ∪ V (Hi).

Theorem 4.6. Let G be a connected graph with cut-vertex v and let Hi, i = 1, . . . , h be the
connected components of G− v. If mr(SF

Hi
) ≤ |Hi|− δ(Hi) for all i = 1, . . . , h, then

mr(SF
G ) ≤ |G|− δ(G).

Proof. Note that for all i, δ(Hi) ≥ δ(G)− 1, since

δ(G) ≤ min
u∈V (Hi)

{degG(u)} ≤ min
u∈V (Hi)

{degHi
(u) + 1} = δ(Hi) + 1.

If δ(G) = 1, then mr(SF
G ) ≤ |G| − δ(G), so without loss of generality we assume δ(G) ≥ 2, and

hence δ(Hi) ≥ 1 for all i.
We first consider the special case in which h = 2, δ(Hi) = 1 for i = 1, 2, and δ(G) = 2. If both

H1 and H2 are paths, then rv(Gi) = 0 for i = 1, 2 (where Gi is the graph induced by V (Hi)∪{v}).
Thus

mr(SF
G ) = mr(SF

H1
) + mr(SF

H1
)

= (|H1|− 1) + (|H2|− 1)
= |H1|+ |H1|+ 1− 3
< |G|− δ(G).
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If (for example) H1 is not a path, then mr(SF
H1

) ≤ |H1|− 2, so

mr(SF
G ) ≤ mr(SF

H1
) + mr(SF

H1
) + 2

≤ (|H1|− 2) + (|H2|− 1) + 2
= |H1|+ |H1|+ 1− 2
= |G|− δ(G).

Next suppose there exists an i such that δ(Hi) ≥ δ(G). By renumbering if necessary, assume
δ(H1) ≥ δ(G). Then

mr(SF
G ) ≤

h∑

i=1

mr(SF
H1

) + 2

≤
h∑

i=1

|Hi|+ 1− δ(H1)−
(

h∑

i=2

δ(Hi)− 1

)

≤ |G|− δ(G),

since h ≥ 2 and δ(H2) ≥ 1.
So the only remaining case is δ(G) ≥ 3 or h ≥ 3 and δ(Hi) = δ(G)− 1 for all i. Then

mr(SF
G ) ≤

h∑

i=1

mr(SF
H1

) + 2

≤
h∑

i=1

(|Hi|− δ(Hi)) + 2

=
h∑

i=1

|Hi|+ 1−
h∑

i=1

δ(Hi) + 1

= |G|−
h∑

i=1

(δ(G)− 1) + 1

= |G|− hδ(G) + h + 1
= |G|− δ(G)− (h− 1)δ(G) + h + 1.

To establish mr(SF
G ) ≤ |G|−δ(G), we show −(h−1)δ(G)+h+1 ≤ 0 if h ≥ 3 or δ(G) ≥ 3 (note that

h ≥ 2 and δ(G) ≥ 2). If δ(G) ≥ 2, h ≥ 3 then −(h−1)δ(G)+h+1 ≤ −(h−1)2+h+1 = −h+3 ≤ 0.
If δ(G) ≥ 3, h ≥ 2 then −(h− 1)δ(G) + h + 1 ≤ −(h− 1)3 + h + 1 = −2h + 4 ≤ 0.

Corollary 4.7. Suppose G is a minimal counterexample to Conjecture 1.1. Then G cannot have
a cut-vertex.

It should be noted that for a graph having a cut-vertex, it is usually preferable to use the
cut-vertex reduction formula (6) for minimum rank first as that will provide a better bound than
use of the bound (3) on the whole graph.

5 Conclusion

We have verified the upper bound on minimum rank over the real numbers given in Conjecture
1.1 for all graphs and families of graphs listed in the on-line AIM Graph Minimum Rank Catalogs
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[2]. We have also established that this bound is valid for bipartite graphs, and shown that a
counterexample of minimal order cannot have a cut-vertex and cannot be a Cartesian product.

This bound is of course useless for a graph with pendent vertices. However, such a graph has
a cut-vertex, and thus the computation of its minimum rank can be reduced to the computation
of minimum ranks of smaller induced subgraphs by the cut-vertex reduction formula (6). So if the
conjecture is true and could be established, it could provide a useful upper bound for minimum
rank that is easy to compute. For a bipartite graph, the bound (5) in Theorem 3.1 is better and
can be useful in the absence of cut-vertices.
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