Evaluate the limit

1. \(\lim_{{x \to 2}} \frac{x^2 + 5}{2x - 7} \)

2. \(\lim_{{x \to 0}} \left(\frac{\tan(-5x)}{x} + 1 \right) \)

Calculate \(y' \)

3. \(y = \cos(3x - 5x^{-1}) \)

4. \(y = \left(x^3 - 4 \sin x \right) \left(\frac{1}{x - 2} \right) \)

5. Find the equation of the line tangent to \(f(x) = 3x^4 - 5 \) at \(x = 1 \).
6. (15 points) Use the definition \[f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} \] to evaluate the derivative of \(f(x) = 7x^2 - 5 \).

7. (5 points each part) The graph of \(g(x) \) is shown at right.
 a) \(\lim_{x \to 3} g(x) = _________ \)
 b) \(\lim_{x \to 3^-} g(x) = _________ \)
 c) \(g(3) = ___________ \)
 d) list the x values between 0.5 and 4.5 at which \(g \) is NOT continuous

8. (6 points each part) Give answers as decimals with 5 digits and include units.
 The position of a particle as a function of time is \(f(t) = \frac{t + 2}{t + 1} \) cm (with \(t \) given in seconds).
 a) What is the average velocity of the particle from \(t = 1 \) s to \(t = 2 \) s?
 b) What is the instantaneous velocity of the particle at \(t = 2 \) s?
 c) After a very long time (\(t > 1 \) year), what is the position of the particle?

9. (5 points each part) Let \(f \) and \(g \) be functions such that \(f(5) = 3, f'(5) = 13, f'(1) = -2, g(5) = 2, g'(5) = 1, g'(3) = -7 \).
 a) \((f + g)'(5) = _________ \)
 b) \(\left(\frac{f}{g} \right)'(5) = _________ \)
 c) \((g \circ f)'(5) = _________ \)