H1: For \(x \in \mathbb{R}^n \), \(0 \cdot x = 0 = x \cdot 0 \).

H2: For \(x, y \in \mathbb{R}^n \), \((ax+by) \cdot (ax+by) = a^2 x \cdot x + 2ab x \cdot y + b^2 y \cdot y \).

H5: Let \(A \) be \(m \times k \) and \(B \) be \(k \times n \). Then the \(j \)th column of \(AB \) is \(A \) times the \(j \)th column of \(B \) and the \(i \)th row of \(AB \) is the \(i \)th row of \(A \) times \(B \).

H6: (cf. 1.13): For an \(n \times n \) matrix \(A \), let \(H = \frac{1}{2} \left(A + A^T \right) \) and \(V = \frac{1}{2} \left(A - A^T \right) \).

(1) \(A = H + V \)
(2) \(H \) is symmetric
(3) \(V \) is skew-symmetric
(4) If \(A = H' + V' \) with \(H' \) symmetric and \(V' \) skew-symmetric, then \(H' = H \) and \(V' = V \).

H7: Let \(A \) be a linear system and let \([C|d] = \text{RREF}([A|b]) \).

(1) If there is a leading 1 in \(d \), then \(Ax = B \) is inconsistent.
(2) If there is not a leading 1 in \(d \) and there is a leading 1 in each column of \(C \) then \(Ax = B \) has a unique solution.
(3) If there is not a leading 1 in \(d \) and there is a column of \(C \) that does not contain a leading 1, then \(Ax = B \) has infinitely many solutions.

H7a: Let \(A \) be an \(m \times n \) matrix, \(b \) an \(n \times 1 \) vector and

1. If \(x_1, x_2 \) are solutions to \(Ax = b \), then \(x_1 - x_2 \) is a solution to \(Ax = 0 \).
2. If \(x_1 \) is a solution to \(Ax = b \) and \(x_0 \) is a solution to \(Ax = 0 \) then \(x_1 + cx_0 \) is a solution to \(Ax = b \) for any real number \(c \).

H7b: (cf. 2.3) The systems \(Ax = b \) and \(Cx = d \) are equivalent iff \([A|b] \) and \([C|d] \) are row equivalent.

H8: If \(C \) is obtained from \(A \) by one elementary row operation, then \(A \) can be obtained from \(C \) by one elementary row operation (reverse operation).

H9: \(\text{RREF}(A) = E_k \ldots E_1 A \) where \(E_1, \ldots, E_k \) are elementary matrices.

H9a: If \(A \) is \(m \times n \), rank \(A \leq \min\{m,n\} \)

H10: The inverse of an elementary matrix is an elementary matrix.

H10a: If \(A_1, \ldots, A_k \) are invertible matrices then \((A_1, \ldots, A_k)^{-1} = A_k^{-1} \ldots A_1^{-1} \)

H11: Let \(A \) be an \(n \times n \) matrix. The following are equivalent:

(1) \(A \) is invertible.
(2) Exists \(n \times n \) \(C \) such that \(CA = I \)
(3) Exists \(n \times n \) \(D \) such that \(AD = I \)
(4) For all \(n \times 1 \) \(b \), \(Ax = b \) is consistent
(5) \(Ax = 0 \) has a unique solution
(6) For all \(n \times 1 \) \(b \), \(Ax = b \) has a unique solution
(7) Rank \(A = n \)
(8) \(\text{RREF}(A) = I \)
(9) \(A \) is a product of elementary matrices.

H12: If \(AB = I \) then \(A \) and \(B \) are invertible and \(B = A^{-1} \).