Directions: All answers must be justified by computation or explanation. Greater weight will be given to one whole (correct) solution than to two error-free but incomplete solutions. Five complete correct answers will receive full credit, but you may answer one additional question if desired (maximum of 6 will be graded, best 5 scores used). Write each solution on a separate page. Submit solutions in the same order as the questions.

1. Classify up to similarity all 3×3 complex matrices satisfying $A^3 = I$.

2. Give examples in $\mathbb{C}^{n \times n}$ of each of the following. (Hint: in each case examples exist with $n \leq 4$.)
 (a) Two matrices with the same minimal and characteristic polynomials that are not similar to each other.
 (b) A matrix with an eigenvalue that has geometric multiplicity different from its algebraic multiplicity.
 (c) A nondiagonal, positive definite matrix.
 (d) A normal matrix that is neither unitary, Hermitian nor skew-Hermitian.

3. Let $A \in \mathbb{C}^{n \times n}$ and $B = \begin{bmatrix} 0 & A \\ I_n & 0 \end{bmatrix}$. If the eigenvalues of A are μ_1, \ldots, μ_n, what are the eigenvalues of B?

4. Let $A \in \mathbb{C}^{n \times n}$ with eigenvalues $\lambda_1, \ldots, \lambda_n$ and singular values $\sigma_1, \ldots, \sigma_n$. Prove
 \[\prod_{i=1}^{n} |\lambda_i| = \prod_{i=1}^{n} \sigma_i. \]

5. Let N be a normal $n \times n$ complex matrix such that $N^3 - 2I$ is nilpotent. Prove that $N^3 = 2I$.

6. Let V be the vector space of polynomials over \mathbb{C} of degree $\leq n$. For $0 \leq k \leq n$, define a linear functional $f_k \in V^*$ by $f_k(p) = p(k)$ for $p \in V$. Show that $\{f_0, \ldots, f_n\}$ is a basis for V^*.

7. Let V be an n-dimensional inner product space and let x, y be fixed vectors in V. Show that $Tv = \langle v, x \rangle y$ defines a linear operator T on V, and describe its adjoint T^* explicitly.

8. Let $P_1, \ldots, P_k \in \mathbb{C}^{n \times n}$ satisfying $\sum_{i=1}^{k} P_i = I$. Prove that the following are equivalent:
 (a) $P_i^2 = P_i$, $i = 1, \ldots, k$.
 (b) $P_i P_j = 0$, $i \neq j$.
 (c) $\text{rank} P_1 + \cdots + \text{rank} P_n = n$.

9. Let A and B be $n \times n$ Hermitian matrices, and let A be positive definite. Show that for any $x \in \mathbb{C}^n$,
 \[\lambda_{\text{min}}(A^{-1}B) \leq \frac{x^* B x}{x^* A x} \leq \lambda_{\text{max}}(A^{-1}B). \]
 (You may use the fact that for any real positive definite matrix M there exists a positive definite matrix S such that $M = S^2$.)