Math 407/507
Applied Linear Algebra
Fritz Keinert
Fall 2016
 [Dec 13] I have posted the answers to the final exams, and the final scores, in BlackBoard. I will be out of town Wednesday, Dec 14, but back on Thursday, if you want to pick up your exam.
 [Dec 11] I plan to be around for my usual 1112 Monday office hour during finals week.
 [Dec 9] I have posted the answers to HW 4 in BlackBoard, and finished updating all the lecture notes below. (The scanner is acting up: there is a line across every page).
 [Dec 7] I have created a page with topics on the final exam, and a file with review problems.
Homework Assignments
The links will become active later.
HW 1, due Friday, Sept 16 [elnino.txt]
HW 2, due Friday, Oct 7
Midterm on Monday, Oct 10
HW 3, due Friday, Nov 11 [mona_small.gif]
HW 4, due Friday, Dec 2
Final Exam Tuesday, Dec 13, 9:4511:45am
Instructor
Fritz
Keinert
464 Carver
2945223
keinert@iastate.edu
Office hours: MWF 11amnoon, and by appointment.
Class meetings: MWF 10:0010:50am, Carver 290
About Math 407/507
(30) Cr. 3. F.
Prereq: MATH 207 or MATH 317
Advanced topics in applied linear algebra including eigenvalues, eigenvalue localization, singular value decomposition, symmetric and Hermitian matrices, nonnegative and stochastic matrices, matrix norms, canonical forms, matrix functions. Applications to mathematical and physical sciences, engineering, and other fields.
There will be some overlap between this course and Math 510 (Theoretical Linear Algebra) and 562 (Numerical Linear Algebra). Compared to Math 510, we will not do a lot of proofs and concentrate more on applications. Compared to Math 562, we will talk about the ideas underlying some of the algorithms, but not derive or study them in detail.
I will try to present interesting applications of linear algebra in various fields, but additional suggestions from the students are welcome.
The difference between Math 407 and Math 507 is that some of the homework problems (especially the more theoretical ones) will be assigned for Math 507 students only.
Textbook
There is no official textbook. I will make my lecture notes available.There is one book that was published recently that looks very interesting. I may base some of my lectures on it, and there is a copy of it on reserve at the library.
Helen Shapiro
Linear Algebra and Matrices:
Topics for a second course
ISBN: 9781470418526,
or through the AMS
bookstore
(there is also an electronic version)
This book is based on topics from two courses, so it is too long to cover in one semester. I plan to use some of the content from chapters 18 and 1519.
Homeworks, Exams, Grades
I will assign 4 homeworks, which together will be worth 50% of your grade. The homeworks will not necessarily all carry the same number of points. Some of the harder problems will be for the Math 507 students only.
There will also be a midterm and a final exam, each worth 25% of your score.
Blackboard
There is a page for this course in BlackBoard. That page is for posting solutions to homework problems, scores, and other things I want to hide from Google. Other than that, there is nothing of interest there.
Matlab and Sage
You will need a system that can calculate with matrices. You can use whatever you like, but if you want help from me, it should be Matlab.
This is like using a calculator in Calculus. You can use one from HewlettPackard, or Texas Instruments, or Casio, or whatever, graphing or not. All that matters is that you know how to use it, and you get some numbers out of it.
Alternatives to Matlab include Mathematica, Maple, and Sage. These are mostly programs for symbolic calculations, but they can handle numerical values as well. Sage can be found at https://sagecell.sagemath.org/. One of the previous instructors (Prof. Hogben) worked a lot with Sage. I am not really familiar with it. Over the years, I have seen other creative approaches, such as Excel, Autocad, and maybe a few more.
Outline of the semester
The following outline is tentative. Feel free to suggest more topics that interest you.
Course Content
This course will feature a review of known topics from basic linear algebra, as well as some new theory, followed by a variety of applications in various fields. The contents of the course are expected to change every semester, depending on the background and interests of whoever is teaching it. The following list describes my personal plans for this course.
 Theory: Review of basic linear algebra; introduction to Matlab
 Theory: Inner products; orthogonality, orthogonal and unitary matrices
 Applications: GramSchmidt orthonormalization; QR Factorization; Fourier Series; overdetermined least
squares problems.
 Theory: Vector and matrix norms; condition numbers
 Theory: Eigenvalues; Gershgorin theorem; spectral radius; Jordan
normal form; nilpotent matrices; Schatten norms
 Applications: Convergence of A^n x; matrix exponentials and other
matrix functions; use of companion matrix to solve polynomial
equations
 Theory: Normal, Hermitian and unitary matrices; positive definite matrices
 Applications: More matrix factorizations, in particular SVD;
applications of SVD
 Applications: Use of matrices in graph theory
 Theory: Nonnegative matrices; stochastic matrices
 Applications: Markov chains
 Applications: Errorcorrecting codes; fast matrix multiplication
Official Math Department Policies
The Math Department Class Policies page describes the official policies that all instructors have to follow. It covers rules on makeup exams, cheating, student behavior, etc.
Students With Disabilities
If you have a documented disability and require accommodations, you should obtain a Student Academic Accommodation Request (SAAR) from the Disability Resources office (Student Services Building, Room 1076, 2946624 or TDD 2946335, disabilityresources@iastate.edu or accommodations@iastate.edu). Please contact your instructor early in the semester so that your learning needs may be appropriately met.
More details can be found in the Math Department Disability Accommodation Policy.
Last Updated:
December 13, 2016
