Recall: The stability of a method is determined by how it can handle the test equation $y' = \lambda y$.

Think of λ as $\frac{df}{dy}$.

λ large

λ small

$y(t)$

$y(t)$

$y'' + 1001y' + 1000y = 0$

Solution: $y = c_1 e^{-t} + c_2 e^{-1000t}$

Now consider the following:

At first, we need to take small steps, because y changes rapidly.

After e^{-1000t} term has decayed, we want to take steps appropriate to e^{-t}, but we can't.

The $\lambda = -1000$ is lurking in the background.
If you open 5 books on ODEs, you will get 5 different definitions of "stiff". Here is mine:

Def An ODE is **stiff** if it involves at least two different time scales. The fast component disappears rapidly, and then we want to switch to larger steps appropriate for the slower components. We can't, because λ is still large, and makes things unstable.

Sources of stiff problems

- chemical reactions
- population models (grass - forest, insects - mammals)
- electric circuits

...and the original source of the word "stiff":

![Diagram of a spring and dashpot system with the equation y'' + dy' + ky = 0 if the damping constant d is large, system is stiff.]

To solve stiff problems, we need a method with a region of stability that extends all the way to 0. (A-stable or A(ω)-stable) All these methods are implicit.

Furthermore, fixed point iteration does not work any more. We need a nonlinear equation solver at every step.

So: - stiff methods require much more work per step
- but we can take bigger steps
Sources of stiff methods

1. Implicit RK methods
2. Some implicit multistep methods (not AM in general)

Most popular: Gear's Backward Differentiation Formulas (BDF)

Recall: Adamo-Houlton: \[y_{n+1} = y_n + h \left[a_0 f_{n+1} + \ldots + b_k f_{n-k+1} \right] \]
only one \(y \)-value

BDF: \[y_{n+1} = \alpha_1 y_n + \ldots + \alpha_k y_{n-k+1} + \beta_0 h f_{n+1} \]
only one \(f \)-value

Special case: \(k=1 \) \[y_{n+1} = y_n + h f_{n+1} \] (backward Euler)

\(k=2 \) Let's derive this, for practice

\[y_{n+1} = \alpha_1 y_n + \alpha_2 y_{n-1} + \beta_0 h f_{n+1} \]

\[\alpha_1 \quad y_n = y_n \]
\[\alpha_2 \quad y_{n-1} = y_n - h y'_n + \frac{h^2}{2} y''_n - \frac{h^3}{6} y'''_n + \frac{h^4}{24} y^{(iv)}_n + \ldots \]
\[\beta_0 \quad h f_{n+1} = h y_{n+1} + h^2 y''_n + \frac{h^3}{2} y'''_n + \frac{h^4}{6} y^{(iv)}_n + \ldots \]

\[\alpha_1 y_n + \alpha_2 y_{n-1} + \beta_0 h f_{n+1} = (\alpha_1 + \alpha_2) y_n + (\beta_0 - \alpha_2) h y'_n + \left(\frac{\alpha_2}{2} + \beta_0 \right) h^2 y''_n + \left(\frac{\alpha_2}{2} - \alpha_2 \right) h^3 y'''_n + \ldots \]

True \[y_{n+1} = y_n + h y'_n + \frac{h^2}{2} y''_n + \frac{h^3}{6} y'''_n + \ldots \]

\[\alpha_1 + \alpha_2 = 1 \quad \beta_0 = \frac{2}{3} \]
\[-\alpha_2 + \beta_0 = 1 \quad \alpha_2 = -\frac{1}{3} \]
\[\frac{\alpha_2}{2} + \beta_0 = \frac{1}{2} \quad \alpha_1 = 1 - \alpha_2 = \frac{4}{3} \]

\[y_{n+1} = \frac{4}{3} y_n - \frac{1}{3} y_{n-1} + \frac{2}{3} h f_{n+1} \]
Leading error term: \[\left[\frac{1}{6} - \left(\frac{p_0}{2} - \frac{\alpha \varepsilon}{6} \right) \right] h^3 \gamma u'' = -\frac{2}{9} h^3 \gamma u'' \]

\[\Rightarrow \text{order 2} \]

Check stability

Chow. eq: \[r^2 = \frac{4}{3} r - \frac{1}{3} + \frac{2}{9} h^2 \]

Reduced Chow. eq: \[r^2 = \frac{4}{3} r - \frac{1}{3} \]

Solutions: \(r_1 = 1, \ r_2 = \frac{1}{3} \)

Stable for small \(h \)

\(k=3 \)

\[y_{n+1} = \frac{18}{11} y_n - \frac{9}{11} y_{n-1} + \frac{2}{11} y_{n-2} + \frac{6}{11} h f_{n+1} \]

Order 3

Q: How do we know this approach produces \(A(\omega) \)-stable methods?

A: We don't. It just happens to work.

In fact, for \(k \geq 7 \), it does not work any more.

See following page for pictures of regions of stability.

Implementation:

Predictor - Corrector

- use \(AB \) as predictor
- solve nonlinear equation based on BDF as corrector
Region of Stability for Backward Differentiation Formulas of order 1 through 6

$k = 1$

$k = 2$

$k = 3$

$k = 4$

$k = 5$

$k = 6$
Notation: \[\alpha_k y_{n+k} + \alpha_{k-1} y_{n+k-1} + \cdots + \alpha_0 y_0 = h \left[\beta_k f_{n+k} + \cdots + \beta_0 f_n \right] \]

\[\alpha(r) = \sum \alpha_s r^s, \quad \beta(r) = \sum \beta_s r^s \]

Note: char. eq. is \[\alpha(r) - h \lambda \beta(r) = 0 \]

reduced char. eq.: \[\alpha(r) = 0 \]

Def: Truncation error at \(t_n \)

\[(T_h y)_n = \frac{1}{h} \left[\sum_{s=0}^{K} \alpha_s y(t_{n+s}) - h \sum_{s=0}^{K} \beta_s y'(t_{n+s}) \right] \]

Facts

1. Assume \(y \in C^{p+1} \)
 The method has order \(p \) if
 \[(T_h y)_n = c \cdot h^p \quad y^{(p)}(3) \]

2. It suffices to check this for \(h = 1, n = 0 \)
 \[\sum \alpha_s y(s) - \sum \beta_s y'(s) = c \cdot y^{(p+1)}(3) \]

3. The method has order \(p \)
 \[\Rightarrow \frac{\alpha(e^z)}{z} - \beta(e^z) \text{ has a zero of order } p \text{ at } z = 0 \]
 \[\Rightarrow \frac{\alpha(z)}{\ln(z)} - \beta(z) \quad z = 1 \]

Sketch of proof: Take \(y(t) = e^{zt} \) for arbitrary fixed \(z \) in (2)
Applications

1. Given $\alpha(r)$, we can find $\beta(r)$ based on the formulas in $\star\star$.

Since $\alpha(r)$ is the reduced char. poly, we can insure stability for small h.

Normally, this leads to pretty much the same calculations as just expanding everything in Taylor series, but for special cases people have developed shortcuts.

Example: For ABM, $\alpha(r) = r^k - r^{k-1}$

2. You can use $\star\star$ to prove general theorems about achievable order:
 - maximum achievable is $p = 2k$
 - maximum achievable stable method is
 $p = k+1$ (k odd)
 $k+2$ (k even)

3. Given $\beta(r)$, we can find $\alpha(r)$ based on $\star\star$

Q: How do we know this will produce a stable method?
A: We don't. We just hope.

Once again, normally this is equivalent to Taylor series matching, but in special cases you can develop shortcuts.

I will sketch how to do this for BDF.
This will also explain where the name comes from.
Sideline to the sideline

Assume \(\{y_n\} \) is an infinite sequence.

\[(\Delta y)_n = y_{n+1} - y_n \quad \text{"forward difference"}\]
\[(\Delta^2 y)_n = y_n - y_{n-1} \quad \text{"backward difference"}\]

\[(\Delta^3 y)_n = (\Delta y)_n - (\Delta y)_{n-1} = (y_n - y_{n-1}) - (y_{n-1} - y_{n-2}) = y_n - 2y_{n-1} + y_{n-2}\]

\[(\Delta^4 y)_n = y_n - 3y_{n-1} + 3y_{n-2} - y_{n-3}\]

For completeness, \((\Delta^0 y)_n = y_n\)

Fact Any \(\sum_{s=0}^{k} x_s y_s \) can be written as \(\sum_{s=0}^{k} x_s (\Delta^s y)_k \)

Example: \[y_3 + 2y_2 - y_1 + y_0 = (-1)(\Delta^3 y)_3 + 2(\Delta^2 y)_3 + (-3)(\Delta y)_3 + 3(\Delta^0 y)_3\]

Check:
\[(-1) \cdot (y_3 - 3y_2 + 3y_1 - y_0) + 2 \cdot (y_3 - 2y_2 + y_1) + (-3) \cdot (y_3 - y_2) + 3 \cdot (y_3)\]
\[y_3 + 2y_2 - y_1 + y_0\]

We can do the same for functions:

\[(\Delta y)(t) = y(t+1) - y(t)\]
\[(\Delta^2 y)(t) = y(t) - y(t-1)\]

Now back to the original sideline
Backward Differentiation Formulas

I think they really should be called "backward difference formulas", but they did not ask me.

Fix k. In BDF, we take $\beta(t) = t^k$

\[\sum \alpha_s y'(s) = \sum \beta_s y'(s) = c \cdot y^{(p+1)}(s) \]

Convert the α-term to backward difference form:

\[\sum_{s=0}^{k} \alpha_s (\Delta^s_y)(k) = y'(k) = c \cdot y^{(p+1)}(s) \]

Choose $\varepsilon \in C$ arbitrary, take $y(t) = e^{k \varepsilon t}$

\[y(k) = e^{k \varepsilon k} = e^{k^2 \varepsilon} \]

\[(\Delta y)(k) = e^{k^2 \varepsilon} - e^{(k-1)^2 \varepsilon} = e^{k^2 \varepsilon} \left(\frac{e^{(k-1)^2 \varepsilon}}{e^{k^2 \varepsilon}} \right) \]

\[(\Delta^s y)(k) = e^{k^2 \varepsilon} \left(\frac{e^{(k-1)^s \varepsilon}}{e^{k^2 \varepsilon}} \right) \]

This gives

\[e^{k^2 \varepsilon} \sum_{s=0}^{k} \alpha_s \left(\frac{e^{(k-1)^s \varepsilon}}{e^{k^2 \varepsilon}} \right)^s - \varepsilon e^{k^2 \varepsilon} = c \cdot e^{k^2 \varepsilon} \cdot \varepsilon^{p+1} \]

Make substitution

\[J = \frac{e^{k^2 t}}{\varepsilon} \quad \iff \quad \varepsilon = \ln(1-J) \]

to end up with

\[\sum_{s=0}^{k} \alpha_s J^s + \ln(1-J) = O(J^{p+1}) \]

\[-3 - \frac{3}{2} J^2 - \frac{5}{3} J^3 \ldots \]

Read off: $\alpha_0 = 0, \alpha_s = \frac{1}{s}$ for $s \geq 1$
Example: \(k = 2 \)

\[
\gamma_0 (v_0^2) + x_1 (v_1^2) + x_2 (v_2^2)
\]

\[
= 0 \cdot \gamma_2 + 1 \cdot (\gamma_2 - \gamma_1) + \frac{1}{2} \cdot (\gamma_2 - 2 \gamma_1 + \gamma_0)
\]

\[
= \frac{3}{2} \gamma_2 - 2 \gamma_1 + \frac{1}{2} \gamma_0
\]

This leads to

\[
\frac{2}{3} \gamma_{n+2} - 2 \gamma_{n+1} + \frac{1}{2} \gamma_n = h f_{n+2}
\]

or

\[
\gamma_{n+2} = \frac{4}{3} \gamma_{n+1} - \frac{1}{3} \gamma_n + \frac{2}{3} h f_{n+2}
\]

(which we derived before)