(1) Let \(\text{Ob}(\text{Rel}) \) be the class of sets. For sets \(A \) and \(B \), let \(\text{Rel}(A, B) \) be the set of all subsets of \(A \times B \). For \(R \subseteq A \times B \) and \(S \subseteq B \times C \), let \(S \circ R = \{(a, c) \in A \times C \mid \exists b \in B . (a, b) \in R \text{ and } (b, c) \in S\} \). Show that \(\text{Rel} \) is a category.

(2) Let \(\text{Twoup} \) be the full subcategory of the category of sets comprising all sets with two or more elements. Show that \(\text{Twoup} \) has no initial object and no terminal object.

(3) Construe a non-trivial group as a category \(G \) with a single object, and with morphism set equal to the set of elements of the group. Show that the category \(G \) does not have products.

(4) Show that the poset category of divisors of 12 is isomorphic to a category of sets and functions.

(5) Suppose that a category \(C \) has a terminal object, and all pullbacks. Show that \(C \) has all equalizers.

(6) Let \(C \) be a category in which each morphism is a monomorphism, and for which there are two distinct morphisms having the same domain and the same codomain. Show that there are objects \(A \) and \(B \) of \(C \) for which the product \(A \times B \) does not exist.

(7) Let \(C \) be the category of complex vector spaces, and let \(R \) be the category of real vector spaces. Let \(G : C \to R \) be the forgetful functor that forgets the non-real scalar multiplications. Show that \(G \) has a left adjoint \(F \).

(8) Consider the functor \(S : \text{Set} \to \text{Set} \) with \(SA = A \times A \) and
\[
Sf : A \times A \to B \times B; (a, a') \mapsto (f(a), f(a'))
\]
for a function \(f : A \to B \). Show that \(S \) is naturally isomorphic to the functor \(\text{Set}(2, _ _) \), where \(2 = \{0, 1\} \).

(9) In a category \(C \), an epimorphism \(u : B \to E \) is regular if it is the coequalizer of a pair of arrows \(f, g : A \to B \). Show that in the category \(\text{Set} \) of sets, each epimorphism is regular.

(10) Prove that the category of finite-dimensional real vector spaces is equivalent to the category \(\text{Matr}_\mathbb{R} \) of real matrices.