(1) Suppose that a function \(f : A \to B \) has non-empty domain. Show that there is a function \(g : B \to A \) with \(fgf = f \).

(2) Let \(A \) be a set. Prove that the direct power \(A^n \) is isomorphic to \(\text{Set}(\{1, 2, \ldots, n\}, A) \) for each positive integer \(n \).

(3) Let \(\alpha \) be a reflexive and transitive relation on a set \(A \). Define a relation \(\beta \) on \(A \) by
\[x \beta y \iff (x \alpha y \text{ and } y \alpha x). \]
(a) Prove that \(\beta \) is an equivalence relation on \(A \).
(b) Prove that \(x \beta y \Rightarrow x \alpha y \) yields a well-defined order relation on the quotient \(A^\beta \).

(4) An element \(x \) of a monoid \(M \) is invertible if and only if its image \(R_x : M \to M \) under the right regular representation \(R : M \to M^M \) is an invertible function.
(a) Show that the set \(M^* \) of invertible elements of \(M \) forms a submonoid of \(M \).
(b) Prove \(x \in M^* \Rightarrow \exists y \in M. xy = 1_M \).

(5) If \(A \) and \(B \) are finite subgroups of a group \(G \), prove that
\[|AB| \cdot |A \cap B| = |A| \cdot |B|. \]