MATH 504 FALL 2003 PRACTICE FINAL

(1) Prove or disprove the following statement for sets A, B, and C:
 If $A \cup B$ is isomorphic to $A \cup C$, then B is isomorphic to C.

(2) Express the poset $(2\{a,b,c\}, \subseteq)$ as an intersection of linear orders.

(3) Let (X, G) be a transitive G-set for a group G. Prove that the following are equivalent:
 (a) $\forall x \in X, \forall g \in G, xg = x \Rightarrow g = 1$;
 (b) $\exists x \in X. \forall g \in G - \{1\}, xg \neq x$.

(4) Compute the size of each (group) conjugacy class of the group A_5.

(5) Let e be an element of a group (G, \cdot).
 (a) Show that the set G forms a group under the multiplication
 $$*: G \times G \to G; (x, y) \mapsto xe^{-1}y.$$
 (b) Show that the group $(G, *)$ with multiplication given in (a) is isomorphic with the original group structure (G, \cdot) on G.

(6) Let G be a 2-transitive permutation group on a set X of size n.
 Prove that $|G|$ is divisible by $n(n - 1)/2$.

(7) Let A, B, and C be subgroups of a group G, with $A \subseteq C \subseteq AB$.
 Show that $C = A(B \cap C)$.

(8) Show that a group G of order 135 cannot be simple. [You may use Sylow’s Theorems, if you carefully quote which ones you use.]