1. (a) Determine the greatest common divisor \(d \) of 45 and 27.
(b) Express the greatest common divisor \(d \) as an integral linear combination of 45 and 27.

2. Let \(x_1, x_2, \ldots, x_{2m} \) be elements of a set \(X \). In the symmetric group \(X! \) on the set \(X \), show that
\[
\left((x_1 \ x_2) \circ (x_3 \ x_4) \circ \cdots \circ (x_{2m-1} \ x_{2m}) \right)^{-1} = (x_{2m-1} \ x_{2m}) \circ \cdots \circ (x_3 \ x_4) \circ (x_1 \ x_2).
\]

3. For \(0 < \theta < \pi/2 \), suppose that
\[
\cos \theta = \frac{l}{n} \quad \text{and} \quad \sin \theta = \frac{m}{n}
\]
with positive integers \(l, m, \) and \(n \). Show that at least one of \(l \) and \(m \) is even.

4. Consider the set
\[
G = \left\{ \begin{bmatrix} a & b \\ 0 & c \end{bmatrix} \middle| a, b, c \in \mathbb{Z}/5, ac = 1 \right\}
\]
of matrices over the ring of integers modulo 5.
(a) Show that \(G \) forms a group under multiplication.
(b) Show that \(|G| = 20 \).

5. Give an example of subgroups \(H \) and \(K \) of a group \(G \), such that \(HK \) is not a subgroup of \(G \). Explain why \(HK \) is not a subgroup.

6. Find a solution \(x \) to the simultaneous congruences
\[
x \equiv 3 \mod 5, \\
x \equiv 7 \mod 12.
\]

7. Let \(I \) and \(J \) be ideals of a ring \(R \), with \(I \) a subset of \(J \).
(a) Show that the quotient ring \(J/I \) is an ideal of \(R/I \).
(b) Show that the quotient rings \(R/J \) and \((R/I)/(J/I) \) are isomorphic.