Let \(f : X \to Y; x \mapsto f(x) \) be a function.

(a) Show that there is a subset \(Y' \) of \(Y \) such that
\[
g : X \to Y'; x \mapsto f(x)
\]
is surjective.

(b) Show that there is a subset \(X' \) of \(X \) such that
\[
h : X' \to Y'; x \mapsto f(x)
\]
is bijective.

Write \(\sigma_a : \mathbb{R} \to \mathbb{R}; x \mapsto a + x \) for the shift by a real number \(a \).

Suppose that a group \(G \) of permutations of \(\mathbb{R} \) contains \(\sigma_a \) and \(\sigma_b \) for real numbers \(a \) and \(b \).

(a) Show that \(G \) contains \(\sigma_{ma} \) for each positive integer \(m \).

(b) Show that \(G \) contains \(\sigma_{ma} \) for each integer \(m \).

(c) Show that the group \(G \) contains \(\sigma_{ma + nb} \) for each integral linear combination \(ma + nb \) of \(a \) and \(b \).

Write each of the 10 symmetries of the regular pentagon

\[
\begin{array}{c}
1 \\
2 \\
3 \\
4 \\
0 \\
\end{array}
\]

in 3-space as a product of disjoint cycles.

Which of the following three conditions determines the kernel relation \(R \) of the cosine function \(\cos : \mathbb{R} \to \mathbb{R}; x \mapsto \cos x \)?

(a) \(x R y \iff x = \pm y \).

(b) \(x R y \iff x = 2\pi n \pm y \) for some integer \(n \).

(c) \(x R y \iff x - y = 2\pi n \) for some integer \(n \).