MATH 301B SPRING 2010 PRACTICE TEST #2

Write clearly, on separate paper. All questions carry equal weight. You will receive credit for your three best answers.

(1) Set

\[G = \left\{ \begin{bmatrix} p & q \\ r & s \end{bmatrix} \mid p, q, s \in \mathbb{Z}, \ r \in 3\mathbb{Z}, \ ps - qr = 1 \right\}. \]

Show that \(G \) is a subgroup of the group of invertible \(2 \times 2 \) real matrices under (the usual) matrix multiplication.

(2) Let \((G, \cdot, e)\) be a finite group, and let \(p \) be an odd prime number. Consider the equation

\[x^p = e \]

for an element \(x \) of \(G \). Show that the number of solutions \(x \) in \(G \) is odd.

(3) Let \(M \) and \(N \) be normal subgroups of a group \(G \). Show that \(MN \) is a normal subgroup of \(G \).

(4) Let \(d_k d_{k-1} \ldots d_1 d_0 \) be the decimal expansion of a positive integer \(n \), so that

\[n = \sum_{j=0}^{k} d_j 10^j \]

with \(0 \leq d_j < 10 \). Show that 9 divides \(n \) if and only if

\[d_k + d_{k-1} + \ldots + d_1 + d_0 \equiv 0 \mod 9. \]