1. (a) Determine the greatest common divisor d of 45 and 27.
 (b) Express the greatest common divisor d as an integral linear combination of 45 and 27.

2. Let x_1, x_2, \ldots, x_{2m} be elements of a set X. In the symmetric group $X!$ on the set X, show that
 \[
 \left((x_1 x_2) \circ (x_3 x_4) \circ \cdots \circ (x_{2m-1} x_{2m}) \right)^{-1} = (x_{2m-1} x_{2m}) \circ \cdots \circ (x_3 x_4) \circ (x_1 x_2).
 \]

3. For $0 < \theta < \pi/2$, suppose that
 \[
 \cos \theta = \frac{l}{n} \quad \text{and} \quad \sin \theta = \frac{m}{n}
 \]
 with positive integers l, m, n. Show that at least one of l and m is even.

4. Prove that $\log_{10} 7$ is irrational.

5. Let M and N be normal subgroups of a group G.
 (a) Show that the intersection $M \cap N$ is a normal subgroup of G.
 (b) Show that the quotient group $M/(M \cap N)$ is a normal subgroup of the quotient group $G/(M \cap N)$.

6. Let X be a subset of a ring R. Show that
 \[
 C_R(X) = \{ r \in R \mid rx = xr \text{ for all } x \in X \}
 \]
 is a subring of R.

7. Let I and J be ideals of a ring R. Prove that $I + J$ is an ideal of R.

Write clearly.
Box or underline your final answers to computational questions.
All questions carry equal weight.