1. Find the greatest common divisor of 10 and 6. Express it as an integral linear combination of 10 and 6.

2. Let G be the set of all 2×2 matrices of the form
 \[
 \begin{pmatrix}
 \cos \theta & \sin \theta \\
 -\sin \theta & \cos \theta
 \end{pmatrix}
 \]
 with real θ. Show that G forms a group under matrix multiplication.

3. Show that each transposition $(1 \ s)$ in S_n (with $1 < s \leq n$) is a product of transpositions from the set
 \[
 \{(r \ r + 1) \mid 1 \leq r < n\}.
 \]

4. Let J be the set of 2×2 matrices whose entries are all even integers. Show that J is an ideal in the ring of all 2×2 matrices over the ring of integers.

5. Let D be the set of all 2×2 matrices of the form
 \[
 \begin{pmatrix}
 x & -y \\
 y & x
 \end{pmatrix}
 \]
 with x and y from the ring \mathbb{Z} of integers. Show that D forms an integral domain.

6. Show that $X^2 + X + 1$ is irreducible over $\mathbb{Z}/5\mathbb{Z}$.

7. Let J be the ideal $(X^2 + X + 1)\mathbb{Z}_5[X]$ in the ring $\mathbb{Z}_5[X]$ of polynomials over \mathbb{Z}_5. Find the multiplicative inverse of $X + J$ in the field $\mathbb{Z}_5[X]/J$.