Math 655 Assignment #3

Problems listed below are related to
(a) Traveling waves
(b) Stationary phase method
(c) Homogenization

1. Consider
 \[u_t = u_{xx} + u(1 - u^2). \]
 Find the traveling wave solution of the form
 \[u = v(x - st), \]
 such that \(v(-\infty) = -1, \ v(+\infty) = 1 \) with proper choice of \(s \).

2. Let \(\phi \) and \(a \) be two given functions satisfying
 \[D\phi(y_k) = 0, \ y_k \in suppt(a) \ k = 1, \cdots N, \]
 and \(D^2\phi(y_k) \) is non-singular for \(k = 1 \cdots N \).
 Find and justify the limit
 \[\lim_{\epsilon \to 0} I_\epsilon, \ I_\epsilon := \int_{\mathbb{R}^n} a(y)e^{i\phi(y)/\epsilon}dy. \]

3. Let \(a(x, y) \) be a smooth, positive function and is 1-periodic in \(y \); \(f \in L^2(0, 1) \) is also given. Suppose that \(u^\epsilon \) solves the problem
 \[
 \begin{cases}
 -(a(x, \frac{y}{\epsilon})u^\epsilon_x)_x = f(x) & x \in (0, 1) \\
 u^\epsilon(0) = u^\epsilon(1) = 0.
 \end{cases}
 \]
 Show that \(u^\epsilon \rightharpoonup u \) weakly in \(H^1_0(0, 1) \), where \(u \) solves
 \[
 \begin{cases}
 -(\bar{a}(x)u_x)_x = f(x) & x \in (0, 1) \\
 u(0) = u(1) = 0,
 \end{cases}
 \]
 for \(\bar{a}(x) = (\int_0^1 a(x, y)^{-1}dy)^{-1} \).