Math 503 HW#5

More interpolation problems.

1. Using Stirling central difference interpolation formula to find the 1st (with \(\tilde{p} \in P_2 \)) and 2nd (with \(\tilde{p} \in P_4 \)) approximation to \(f''(x_k) \). Comment on their error bounds by using the Taylor expansion formula.

2. Let \(x_0, \ldots x_n \) be the zeros of the Legendre polynomial \(L_{n+1} \). Show:
 a) For every polynomial \(p \in P_n \)
 \[\|p\|_2 \leq \sqrt{2} \max_{0 \leq k \leq n} |p(x_k)|. \]
 b) Let \(f \in C[-1, 1] \) and suppose \(\tilde{p}_n \in P_n \) are the polynomials which interpolate at \(x_0, \ldots x_n \). Then
 \[\lim_{n \to \infty} \|f - \tilde{p}_n\|_2 = 0. \]

3. Program the complete Horner Algorithm, and for the polynomial \(p(x) = 3x^5 - 7x^4 + 2x^2 + 4x + 12 \), compute the coefficients of its expansion around the points \(\xi := 2, -1, -3 \) respectively.

4. Using the Neville’s Algorithm, find an approximation to \(e^{0.53} \), using the points \(x_k = 0.3 + kh \) with \(h = 0.1 \) for \(0 \leq k \leq 5 \).

5. Approximate the function \(f(x) = \sin(\frac{\pi}{2} x) \) for \(x \in [0, 1] \) by simple cubic Hermite interpolation using the points \(x_0 = 0 \) and \(x_1 = 1 \). What is the maximum relative interpolation error in the intervals \([0.0.25],[0.25,0.75],[0.75,1]\).