Here listed are all interpolation problems.

1. Let \(g_1, \ldots, g_n \in C[a, b] \) be elements of a Chebyshev system, and let \(x_1, \ldots, x_n \) be pairwise distinct data points. For any two elements \(f, g \in C[a, b] \), let \(\langle f, g \rangle := \sum_{k=1}^{n} f(x_k)g(x_k) \). Show directly that if \(\tilde{f} \in \text{span}(g_1, \ldots, g_n) \) satisfies the normal equations for the best approximation of \(f \) with respect to \(\langle \cdot, \cdot \rangle \), then \(\tilde{f} \) interpolates \(f \) at \(x_1, \ldots, x_n \).

2. Let \(f \in C_1[a, b] \), and suppose that \(x_1 \cdots x_n \) are pairwise distinct points. Show that for every \(\epsilon > 0 \), there exists a polynomial \(p \) such that \(\| f - p \|_{\infty} < \epsilon \) and, simultaneously, satisfies the interpolation conditions \(p(x_k) = f(x_k), 1 \leq k \leq n \).

3. How small must the maximal distance between two neighboring data points be to insure that the polynomial interpolant \(\tilde{p} \in P_5 \) of the exponential function on \([-1, 1] \) satisfies \(\| f - \tilde{p} \|_{\infty} \leq 5 \cdot 10^{-8} \) and \(\| f' - \tilde{p}' \|_{\infty} \leq 5 \cdot 10^{-7} \) simultaneously?

4. Determine the interpolating polynomial of degree 2 in both the Lagrange and Newton forms for the functions \(f(x) := \frac{2}{1+x^2} \) and \(f(x) := \cos(\pi x) \) using the interpolation points \(x_1 = -1, x_2 = 0, x_3 = 1 \).

5. Compute the Peano representation of the remainders for linear interpolation at \(x_1 = a, x_2 = b \) under the hypothesis that \(f \in C_2[a, b] \) and that \(f \in C_1[a, b] \), respectively. Show that \(|R_1(f; x)| \leq \max_{x \in [a, b]} |f'(x)|(b - a) \).