Problem 13. For a positive integer n, the numbers 2^n and 5^n are both expanded (in base ten.) Prove that if these two numbers have the same (non zero) leading digit, then this digit *must* be 3. (As an example $2^5 = 32$ and $5^5 = 3125$ both have leading digit of 3.)

Solution. Let a be the common first digit for 2^n and 5^n. It is easy to check that $n \geq 4$ so there are positive integers k and l so that

$$a \cdot 10^k < 2^n < (a + 1)10^k \quad \text{and} \quad a \cdot 10^l < 5^n < (a + 1)10^l.$$

Multiplying, we find

$$a^210^{k+l} < 10^n < (a + 1)^210^{k+l},$$

so

$$a^2 < 10^{n-k-l} < (a + 1)^2.$$

Because a is a digit and a power of 10 is strictly between a^2 an $(a + 1)^2$, it follows that $a = 3$.
