Problem 2. A frog jumps in the plane with the first jump from the origin. The frog jumps distance 1 on the first jump, distance 2 on the second jump, distance 4 on the third jump and in general jumps distance 2^{n-1} in the n^{th} jump. For each jump, the frog jumps in a straight line but can jump in any direction. Can the frog, by a judicious choice of directions, end up back at the origin on its 2012^{th} jump?

What is the answer if the frog jumps distance 1.5^{n-1} on its n^{th} jump? Your answers must include complete supporting work.