Combinatorial Generation in the Presence of Symmetry

Derrick Stolee

Iowa State University
dstolee@iastate.edu
http://www.math.iastate.edu/dstolee/

December 2, 2013
ISU MECS Seminar
Application: Generating Chemical Molecules
Application: Generating Chemical Molecules

α-CD

β-CD

γ-CD
Application: Generating Chemical Molecules

Chirality?
Application: Compiling Software

1. \(r = c \div a_3 \)
2. \(p = -b \div a_3 \)
3. \(a_3 = 3 \times a \)
4. \(ad_3 = a_3 \times d \)
5. \(psq = p \times p \)
6. \(psq = psq \times psq \)
7. \(pcu = psq \times psq \)
8. \(q = pcu - (bc - thread) \div sixasq \)
9. \(rmq = r - psq \)
10. \(qsq = q \times q \)
11. \(t = rmq \times rmq \times rmq \)
12. \(z = \sqrt{qsq - t} \)
13. \(w = \sqrt[3]{q + z} \)
14. \(y = \sqrt[3]{q - z} \)
15. \(x = w + y + p \)
Exponential Behavior is Unavoidable

When dealing with NP-hard problems (or worse!), exponential behavior is unavoidable.
Exponential Behavior is Unavoidable

When dealing with NP-hard problems (or worse!), exponential behavior is unavoidable.

All we can do is delay or diminish that exponential behavior.
Shifting the Exponent

\[1.5^N \]

- Feasible for 1000 nodes
- Feasible for 1 node
Shifting the Exponent

T

N

feasible for 1000 nodes

feasible for 1 node

1.5^N

1.25^N
Shifting the Exponent

The diagram illustrates the relationship between T, N, and (1.5^N), (1.25^N), and (1.25^{N-N_0}). The curves represent different scenarios:

- The blue region above 1.5^N is feasible for 1000 nodes.
- The green region above 1.25^N is feasible for 1 node.
- The yellow region below 1.25^{N-N_0} also indicates feasibility for 1 node.

The diagram helps visualize how shifting the exponent affects the feasibility of certain conditions.
Graphs
Graphs
An **isomorphism** between G_1 and G_2 is a bijection from $V(G_1)$ to $V(G_2)$ that induces a bijection from $E(G_1)$ to $E(G_2)$.
An **isomorphism** between G_1 and G_2 is a bijection from $V(G_1)$ to $V(G_2)$ that induces a bijection from $E(G_1)$ to $E(G_2)$.

An **automorphism** of G is a bijection from $V(G)$ to $V(G)$ that induces a bijection from $E(G)$ to $E(G)$.

Graphs

![Graph Diagrams]
Graphs: Automorphisms

The set of automorphisms form a group.
Graphs: Automorphisms

The set of **automorphisms** form a **group**.
Permutations

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>3</td>
<td>4</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>
Permutations
Permutations

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td></td>
<td>4</td>
<td></td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>4</td>
<td></td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>4</td>
<td>2</td>
<td></td>
<td>5</td>
</tr>
</tbody>
</table>
Permutations
Permutations
Graphs: Orbits

An **orbit** is a maximal set of objects such that every object is sent to every other object by some automorphism.
Graphs: Orbits

An **orbit** is a maximal set of objects such that every object is sent to every other object by some automorphism.
An **orbit** is a maximal set of objects such that every object is sent to every other object by some automorphism.
An **orbit** is a maximal set of objects such that every object is sent to every other object by some automorphism.
Other Objects
Colored (Partitioned) Graphs
Other Objects

Latin Squares

A B P C O D N E M F L G K H J I
B C A D P E O F N G M H L I K J
C D B E A F P G O H N I M J L K
D E C F B G A H P I O J N K M L
E F D G C H B I A J P K O L N M
F G E H D I C J B K A L P M O N
G H F I E J D K C L B M A N P O
H I G J F K E L D M C N B O A P
I J H K G L F M E N D O C P B A
J K I L H M G N F O E P D A C B
K L J M I N H O G P F A E B D C
L M K N J O I P H A G B F C E D
M N L O K P J A I B H C G D F E
N O M P L A K B J C I D H E G F
O P N A M B L C K D J E I F H G
P A O B N C M D L E K F J G I H

This 16 × 16 latin square assists in the construction of a Williams Design.
Subobjects
Independent Sets
Subobjects

(Induced) Subgraphs
Subobjects

(Induced) Subgraphs
Subobjects

(Induced) Subgraphs
Subobjects

(Induced) Subgraphs
Subobjects

(Proper) Colorings
Goal: Generate all *unlabeled* objects that satisfy the constraints.
Symmetry Breaking

1. Reduces isomorphic duplicates.
2. Does not allow for dynamic symmetry updates.
3. Removes symmetry, then uses standard symmetry-unaware algorithms.
Orbital Branching

1. Reduces isomorphic duplicates.
2. Allows for dynamic symmetry updates.
3. Branching method can be customized to the given problem.
4. Integrates well with branch-and-bound methods and constraint propagation.

(Ostrowski talked about this, also my CS Colloquium)
Canonical Deletion

1. Eliminates isomorphic duplicates*.
2. Allows for dynamic symmetry updates.
3. Augmentation method can be customized to the given problem.
4. Does not integrate well with branch-and-bound methods or constraint propagation.

Canonical Deletion

2. Define a *canonical construction path* to every unlabeled object.
3. Only follow paths that agree with the canonical construction path.
Let’s generate all graphs of order n by adding vertices one-by-one.

Augmentation: Add a vertex adjacent to a set $S \subset V(G)$.

Deletion: Select a vertex $v \in V(G)$ to delete, $G' = G - v$.
Generating with Vertex Augmentations
Example: Generating Graphs by Vertex Additions

Let’s generate all graphs of order n by adding vertices one-by-one.

Augmentation: Add a vertex adjacent to a set $S \subseteq V(G)$.

IMPORTANT: Only one augmentation per orbit!

Deletion: Select a vertex $v \in V(G)$ to delete, $G' = G - v$.
Canonical Labeling

A canonical labeling takes a labeled graph G. Canonical labels can be computed by McKay's nauty software.
Canonical Labeling

A canonical labeling takes a labeled graph G and applies labels $\sigma_G(v)$ to each $v \in V(G)$. Canonically labeled graphs are isomorphic if and only if they have the same label sequence. Canonical labels can be computed by McKay's nauty software.
A **canonical labeling** takes a labeled graph G and applies labels $\sigma_G(v)$ to each $v \in V(G)$ so that any $H \cong G$ with labels $\sigma_H(v)$ has an isomorphism $\sigma^{-1}_H(\sigma_G(v))$ from G to H. Canonical labels can be computed by McKay's *nauty* software.
A canonical labeling takes a labeled graph G and applies labels $\sigma_G(v)$ to each $v \in V(G)$ so that any $H \cong G$ with labels $\sigma_H(v)$ has an isomorphism $\sigma_H^{-1}(\sigma_G(v))$ from G to H. Canonical labels can be computed by McKay's nauty software.
Canonical Labeling

A canonical labeling takes a labeled graph G and applies labels $\sigma_G(v)$ to each $v \in V(G)$ so that any $H \cong G$ with labels $\sigma_H(v)$ has an isomorphism $\sigma_H^{-1}(\sigma_G(v))$ from G to H.

![Diagram showing graphs G, $[n]$, and H with an isomorphism between G and H.]
Canonical Labeling

A canonical labeling takes a labeled graph G and applies labels $\sigma_G(v)$ to each $v \in V(G)$ so that any $H \cong G$ with labels $\sigma_H(v)$ has an isomorphism $\sigma_H^{-1}(\sigma_G(v))$ from G to H.

 Canonical labels can be computed by McKay's nauty software.
Canonical Labeling

A **canonical labeling** takes a labeled graph G and applies labels $\sigma_G(v)$ to each $v \in V(G)$ so that any $H \cong G$ with labels $\sigma_H(v)$ has an isomorphism $\sigma_H^{-1}(\sigma_G(v))$ from G to H.

Canonical labels can be computed by McKay’s *nauty* software.
Canonical Deletion by Filtering

Let $S = V(G)$. Filter S until $|S| = 1$ by the following conditions:

1. Remove cut vertices from S.
2. Let $d = \min\{\deg(v) : v \in S\}$. Set $S \leftarrow \{v \in S : \deg(v) = d\}$.
3. (Include other, more complicated invariants here.)
4. Compute a canonical labeling ℓ, and set $v = \arg\min_{v \in S} \ell(v)$.

The vertex v is the canonical deletion.
Canonical Deletion by Filtering

Let $S = V(G)$. Filter S until $|S| = 1$ by the following conditions:

1. Remove cut vertices from S.

Let $S = V(G)$. Filter S until $|S| = 1$ by the following conditions:

1. Remove cut vertices from S.
2. Let $d = \min\{\deg(v) : v \in S\}$. Set

 $$S \leftarrow \{v \in S : \deg(v) = d\}.$$
Let $S = V(G)$. Filter S until $|S| = 1$ by the following conditions:

1. Remove cut vertices from S.
2. Let $d = \min\{\deg(v) : v \in S\}$. Set

 $$S \leftarrow \{v \in S : \deg(v) = d\}.$$

3. (Include other, more complicated invariants here.)
Let $S = V(G)$. Filter S until $|S| = 1$ by the following conditions:

1. Remove cut vertices from S.
2. Let $d = \min\{\deg(v) : v \in S\}$. Set
 $$S \leftarrow \{v \in S : \deg(v) = d\}.$$
3. (Include other, more complicated invariants here.)
4. Compute a canonical labeling ℓ, and set
 $$v = \arg\min_{v \in S} \ell(v).$$
Canonical Deletion by Filtering

Let $S = V(G)$. Filter S until $|S| = 1$ by the following conditions:

1. Remove cut vertices from S.
2. Let $d = \min\{\deg(v) : v \in S\}$. Set
 \[S \leftarrow \{ v \in S : \deg(v) = d \}. \]
3. (Include other, more complicated invariants here.)
4. Compute a canonical labeling ℓ, and set
 \[v = \arg\min_{v \in S} \ell(v). \]

The vertex v is the canonical deletion.
Canonical Vertex Deletions
By thinking of our filtering mechanism for the canonical deletion, we can avoid making augmentations that will not be canonical deletions:
Using Deletion To Minimize Augmentations

By thinking of our filtering mechanism for the canonical deletion, we can avoid making augmentations that will not be canonical deletions:

1. If minimizing degree, do not add anything of degree more than \(\delta(G) + 1\).
Using Deletion To Minimize Augmentations

By thinking of our filtering mechanism for the canonical deletion, we can avoid making augmentations that will not be canonical deletions:

1. If minimizing degree, do not add anything of degree more than $\delta(G) + 1$.
2. If not deleting cut-vertices, everything has degree at least one.
Canonical Vertex Deletions
Effectiveness of Canonical Deletion

Every unlabeled object is expanded exactly once.
Effectiveness of Canonical Deletion

Every unlabeled object is **expanded** exactly once.

Every unlabeled object is **reached** at most *once per possible deletion*.
Effectiveness of Canonical Deletion

Every unlabeled graph is **expanded** exactly once.

Every unlabeled graph is **reached** at most n times.
Effectiveness of Canonical Deletion

Every unlabeled graph is **expanded** exactly once.

Every unlabeled graph is **reached** at most n times.

Most unlabeled graphs have $n!$ different labelings.

So the resulting computation time is about
$$\sum_{n=1}^{N} n \cdot f(n) \approx 2N^2 - N \log N$$
where $f(n)$ is the average time to compute canonical labels and automorphisms.
Effectiveness of Canonical Deletion

Every unlabeled graph is **expanded** exactly once.

Every unlabeled graph is **reached** at most \(n \) times.

Most unlabeled graphs have \(n! \) different labelings.

So the resulting computation time is about

\[
\sum_{n=1}^{N} 2^{\binom{n}{2}} \cdot \frac{nf(n)}{n!} \approx 2^{N^2 - N \log N}
\]

where \(f(n) \) is the average time to compute canonical labels and automorphisms.
<table>
<thead>
<tr>
<th>n</th>
<th>Labeled graphs of order n</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>32,768</td>
</tr>
<tr>
<td>7</td>
<td>2,097,152</td>
</tr>
<tr>
<td>8</td>
<td>268,435,456</td>
</tr>
<tr>
<td>9</td>
<td>68,719,476,736</td>
</tr>
<tr>
<td>10</td>
<td>35,184,372,088,832</td>
</tr>
<tr>
<td>11</td>
<td>36,028,797,018,963,968</td>
</tr>
<tr>
<td>12</td>
<td>73,786,976,294,838,206,464</td>
</tr>
<tr>
<td>13</td>
<td>302,231,454,903,657,293,676,544</td>
</tr>
<tr>
<td>14</td>
<td>2,475,880,078,570,760,549,798,248,448</td>
</tr>
<tr>
<td>15</td>
<td>40,564,819,207,303,340,847,894,502,572,032</td>
</tr>
</tbody>
</table>

$$2^{\binom{n}{2}} \approx 2^{\theta(n^2)}$$
<table>
<thead>
<tr>
<th>n</th>
<th>Unlabeled connected graphs of order n</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>85</td>
</tr>
<tr>
<td>7</td>
<td>509</td>
</tr>
<tr>
<td>8</td>
<td>4,060</td>
</tr>
<tr>
<td>9</td>
<td>41,301</td>
</tr>
<tr>
<td>10</td>
<td>510,489</td>
</tr>
<tr>
<td>11</td>
<td>7,319,447</td>
</tr>
<tr>
<td>12</td>
<td>117,940,535</td>
</tr>
<tr>
<td>13</td>
<td>2,094,480,864</td>
</tr>
<tr>
<td>14</td>
<td>40,497,138,011</td>
</tr>
<tr>
<td>15</td>
<td>845,480,228,069</td>
</tr>
</tbody>
</table>

OEIS Sequence A002851 Grows $2^{\Omega(n^2)}$.
<table>
<thead>
<tr>
<th>n</th>
<th>Unlabeled connected graphs of order n</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>85</td>
</tr>
<tr>
<td>7</td>
<td>509</td>
</tr>
<tr>
<td>8</td>
<td>4,060</td>
</tr>
<tr>
<td>9</td>
<td>41,301</td>
</tr>
<tr>
<td>10</td>
<td>510,489</td>
</tr>
<tr>
<td>11</td>
<td>7,319,447</td>
</tr>
<tr>
<td>12</td>
<td>117,940,535</td>
</tr>
<tr>
<td>13</td>
<td>2,094,480,864</td>
</tr>
<tr>
<td>14</td>
<td>40,497,138,011</td>
</tr>
<tr>
<td>15</td>
<td>845,480,228,069</td>
</tr>
</tbody>
</table>

Requires about 1 day of CPU Time.
<table>
<thead>
<tr>
<th>n</th>
<th>Unlabeled connected graphs of order n</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>85</td>
</tr>
<tr>
<td>7</td>
<td>509</td>
</tr>
<tr>
<td>8</td>
<td>4,060</td>
</tr>
<tr>
<td>9</td>
<td>41,301</td>
</tr>
<tr>
<td>10</td>
<td>510,489</td>
</tr>
<tr>
<td>11</td>
<td>7,319,447</td>
</tr>
<tr>
<td>12</td>
<td>117,940,535</td>
</tr>
<tr>
<td>13</td>
<td>2,094,480,864</td>
</tr>
<tr>
<td>14</td>
<td>40,497,138,011</td>
</tr>
<tr>
<td>15</td>
<td>845,480,228,069</td>
</tr>
</tbody>
</table>

Requires over **1 year** of CPU Time.
Implementation

My **TreeSearch** library enables parallelization in the Condor scheduler.

Executes on the **Open Science Grid**, a collection of supercomputers around the country.
Q: How can we integrate constraint propagation with canonical deletion?
Let $f(n, p)$ be the maximum number of edges in a graph of order n with exactly p perfect matchings.
Let $f(n, p)$ be the maximum number of edges in a graph of order n with exactly p perfect matchings.

We determine this value and characterize all graphs achieving this bound for all n (for small p).
Let \(f(n, p) \) be the **maximum number of edges** in a graph of order \(n \) with **exactly** \(p \) **perfect matchings**.

We determine this value and characterize all graphs achieving this bound for all \(n \) (for small \(p \)).

Requires building a canonical deletion that has the number of perfect matchings be **monotonic**!
To learn more...

- B. D. McKay. Isomorph-free exhaustive generation.
- B. D. McKay. Small graphs are reconstructible.
- F. Margot. Pruning by isomorphism in branch-and-cut.
- B. D. McKay, A. Meynert. Small latin squares, quasigroups, and loops.
- G. Brinkmann, B. D. McKay. Posets on up to 16 points.
- P. Kaski, P. R. J. Östergard. The Steiner triple systems of order 19.
- D. Stolee. Isomorph-free generation of 2-connected graphs with applications.
- D. Stolee. Generating p-extremal graphs.
Combinatorial Generation in the Presence of Symmetry

Derrick Stolee

Iowa State University
dstolee@iastate.edu
http://www.math.iastate.edu/dstolee/

December 2, 2013
ISU MECS Seminar