1. [Burris-Sanka. 1.1.9] Let \(\langle A, \leq \rangle \) be a finite poset. Show that there is a total (i.e., linear) order \(\leq' \) on \(A \) such that \(\leq \subseteq \leq' \), i.e., \(a \leq b \) implies \(a \leq' b \).

Hint: consider the set of all partial orders \(\preceq \) on \(A \) such \(\leq \subseteq \preceq \). Show that there must be a maximal one and that any maximal one is a total order. The result holds also for infinite posets, but Zorn’s lemma must be used in this case.

2. [Burris-Sanka. 1.1.10] Let \(A = \langle A, \lor, \land \rangle \) be a lattice. An element \(a \in A \) is join irreducible if \(a = b \lor c \) implies \(a = b \) or \(a = c \). If \(A \) is a finite lattice, show that every element is of the form \(a_1 \lor \cdots \lor a_n \), where each \(a_i \) is join irreducible.

3. [Burris-Sanka. 1.2.4] Let \(A = \langle A, \leq \rangle \) be a poset. A subset \(S \) of \(A \) is a lower segment of \(A \) if every element of \(A \) that is less than or equal to some element of \(S \) is in \(S \), i.e., for all \(a \in A \) and \(s \in S \), \(a \leq s \) implies \(a \in S \). Show that the lower segments of \(A \) form a lattice with operations under \(\cup \) and \(\cap \) (the set-theoretical join and meet). If \(A \) has a least element, show that the set \(L(A) \) of non-empty lower segments of \(A \) forms a lattice.

4. [Burris-Sanka. 1.2.5 and 1.3.2] If \(A = \langle A, \lor, \land \rangle \) is a lattice, then an ideal of \(A \) is a nonempty lower segment that is closed under \(\lor \). Show that the set \(I(A) \) of ideals of \(A \) forms a lattice under \(\subseteq \).

If \(A \) is distributive, show that \(\langle I(A), \subseteq \rangle \) is distributive.

5. Let \(A \) be a bounded lattice (a lattice is bounded if it has a least element 0 and a greatest element 1). Let \(\text{Sub}(A) \) be the set of all sublattices of \(A \) that include 0 and 1. Show that \(\text{Sub}(A) = \langle \text{Sub}(A), \subseteq \rangle \) is a complete lattice.

Show that, if \(A \) is distributive, then for all \(H, K \in \text{Sub}(A) \), \(H \lor K \) consists of all elements of \(A \) of the form \((h_1 \land k_1) \lor \cdots \lor (h_n \land k_n) \), with \(1 \leq n \in \omega, h_1, \ldots, h_n \in H \) and \(k_1, \ldots, k_n \in K \).