Numerical Analysis Qualifying Exam
August 22, 2009

Instructions

• Write your ISU ID Number on every page that you turn in. Do not write your name on any sheet that you turn in

• Work all 6 problems. Start each problem on a separate sheet of paper and clearly indicate the problem number

1. (a) Show that if $0 \neq s \in \mathbb{R}^n$ and $E \in \mathbb{R}^{n \times n}$, then $\|E(I - ss^T/s^Ts)\|_F^2 = \|E\|_F^2 - \|Es\|_2^2 / s^Ts$.

(b) Suppose $u \in \mathbb{R}^m$ and $v \in \mathbb{R}^n$. Show that if $E = uv^T$, then $\|E\|_F = \|E\|_2 = \|u\|_2\|v\|_2$.

(c) Suppose $A \in \mathbb{R}^{m \times n}$, $y \in \mathbb{R}^m$, and $0 \neq s \in \mathbb{R}^n$. Show that $E = (y - As)s^T/s^Ts$ has the smallest 2-norm of all $m \times n$ matrices E that satisfy $(A + E)s = y$.

2. (a) A set of nonzero vectors $\{p_0, p_1, \ldots, p_{n-1}\}$ in \mathbb{R}^n is said to be conjugate with respect to a symmetric positive definite matrix A if $p_i^TAp_j = 0$, $\forall i \neq j$. Show that $p_0, p_1, \ldots, p_{n-1}$ are linearly independent.

(b) Consider $Ax = b$. Let $\{x_k\}$ be a sequence in \mathbb{R}^n, $x_{k+1} = x_k + \alpha_k p_k$, where $\alpha_k = p_k^T(b - Ax_k)/p_k^TAp_k$. Show that x_n solves the equation $Ax = b$.

3. Let n be a positive integer and $f \in C^{n+1}[a, b]$ (i.e., f is a $(n+1)$ times differentiable function). Let $p_n(x)$ denote the Lagrange interpolation polynomial of degree n with interpolation nodes $x_0, x_1, \ldots, x_n \in [a, b]$.

a) Prove that the Lagrange interpolation polynomial is unique.

b) Give an explicit formula for the Lagrange interpolation polynomial $p_n(x)$.

c) Prove the following error formula:

$$f(x) - p_n(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} \Pi_{i=0}^{n}(x - x_i)$$
for some $\xi \in (a, b)$. (Hint: consider the number of zeros of the function $g(t) = f(t) - p_n(t) - [f(x) - p_n(x)]\omega(t)/\omega(x)$ and its derivatives of various orders, where $\omega(t) = \prod_{i=0}^{n}(t - x_i)$.)

4. a) Determine the coefficients a, b, c, d in the following quadrature formula
$$\int_{-1}^{1} f(x) \, dx \approx a f(-1) + b f(1) + c f(-1) + d f(1)$$
such that this formula is exact for polynomials of the highest possible degree.

b) Derive an error bound using any relevant interpolation error formula that you know of.

5. a) State a convergence criterion for the fixed point iteration $x_{n+1} = F(x_n)$.

b) Let $p > 0$ be a given number and consider the iterations $x_{n+1} = \sqrt{p + x_n}$ for $n = 0, 1, 2, \cdots$ with an initial point x_0. Prove that if $x_0 > -p + \frac{1}{4}$, then the iterations converge.

c) Write a pseudo-code implementing fixed point iterations with the following stopping criteria: $|x_{n+1} - x_n| < \epsilon_1|x_n|$ OR $|f(x_{n+1})| < \epsilon_2$ OR $n + 1 > N_{\text{max}}$ where N_{max} is a specified maximum number of iterations.

6. For the initial value problem
$$\frac{dy}{dt} = f(t, y), \quad y(t_0) = y_0,$$
determine the coefficients a_1, a_2, p_1, p_2 in the following scheme

\[
Y_0 = y_0, \\
Y_{i+1} = Y_i + h\left(a_1 f(t_i, Y_i) + a_2 f(t_i + p_1 h, Y_i + p_2 h f(t_i, Y_i))\right) \quad i = 0, 1, 2, \cdots
\]
to obtain a second order method, where h is a uniform step length.