APPLIED MATH QUALIFYING EXAMINATION

Spring, 2009
Thursday, January 8, 9:00am-1:00pm
Room 305 Carver

Instructions

• Write your student ID number on every page that you turn in. Do NOT write your name on any page you turn in.
• Turn in solutions to 6 problems. No credit will be given for additional problems.
• Start each problem on a separate sheet of paper, with the problem number clearly stated at the top. SHOW ALL WORK.
• In the event that you believe a problem has a misprint or is improperly stated, ask the proctor for a clarification. Problems are not to be interpreted trivially.

Problems:

1. Consider the integro-differential boundary value problem

\[-u'' + \int_0^1 xy u(y) \, dy = f(x), \quad 0 < x < 1, \quad u(0) = 0, \quad u'(1) = 0. \]

A function \(u(x) \) satisfies (1) if and only if \(u(x) \) and \(\alpha \in \mathbb{R} \) simultaneously satisfy

\[u(x) = \int_0^1 g(x, s) [f(s) - \alpha s] \, ds, \quad \alpha = \int_0^1 y u(y) \, dy, \]

where \(g(x, s) \) is the Green's function for the operator \(-d^2/dx^2\) subject to the boundary conditions \(u(0) = 0, \quad u'(1) = 0\). Find \(g(x, s) \), the numerical value of \(\alpha \), and the explicit integral representation of \(u(x) \).

2. Let \(A \) and \(B \) be \((n \times n)\) matrices satisfying \(\| I - BA \| < 1 \), where \(\| \cdot \| \) is an operator norm on \(\mathbb{R}^n \). (In this case \(B \) is said to be an approximate inverse of \(A \).) Prove that both \(A \) and \(B \) are invertible and that

\[\| A^{-1} - B \| \leq \frac{\| B \| \| I - BA \|}{1 - \| I - BA \|}. \]

Make your proof as complete as possible.

3. Define an operator \(A \) on \(L^2(-1, 1) \) by

\[(Au)(x) = xu(x) + \theta \int_{-1}^1 u(x) \, dx, \]

where \(\theta \) is a positive constant. Show that \(A \) is bounded and self-adjoint. Describe the spectrum of \(A \) completely.
4. Does the equation \(T(\phi) = \sum_{n=1}^{\infty} n!\phi^{(n)}(n) \) define a distribution on \(\mathbb{R} \)? Justify your answer carefully.

5. Carry out the Gram-Schmidt procedure to find an orthonormal basis for the subspace \(M \) of \(L^2(-1,1) \) spanned by \(\{1, x, x^2, x^3\} \), and find the orthogonal projection of \(\sin(\pi x) \) onto \(M \).

6. The sequence of locally integrable functions \(\{f_k\}_{k=1}^{\infty} \) given by
\[
f_k(x) = k^2 H(x) e^{-kx}
\]
defines a sequence \(\{T_k\}_{k=1}^{\infty} \) of distributions on \(\mathbb{R} \). Find the limiting distribution \(T = \lim_{k \to \infty} T_k \) and verify that the limit exists in the sense of distributions.

7. Set \(U(x, t) = \frac{1}{2} H(t - |x|) \). Show that \(U \) is a fundamental solution with pole at \((0,0) \in \mathbb{R}^2 \) for the operator
\[
\frac{\partial^2}{\partial t^2} - \frac{\partial^2}{\partial x^2}.
\]

8. Let \(\Omega \) be a bounded open subset of \(\mathbb{R}^n \), and define the functional \(J \) on \(H_0^1(\Omega) \setminus \{0\} \) by
\[
J(u) = \frac{\int_{\Omega} |\nabla u|^2 \, dx}{\int_{\Omega} |u|^2 \, dx}.
\]
Show that the critical points of \(J \) are exactly the eigenfunctions of the operator \(-\Delta \) subject to the homogeneous Dirichlet boundary condition \((u = 0 \ on \ \partial \Omega) \).

9. Define the integral operator \(K \) on \(L^2(0,1) \) by
\[
Kf(x) = \int_0^1 \frac{f(y)}{\sqrt{|x-y|}} \, dy.
\]
Show that \(K \) is a compact operator. (Hint: Write \(K \) as the sum of a compact operator and a “small” operator.)