1. Let \(R = [-h, h] \times [-k, k] \) be a rectangle in \(\mathbb{R}^2 \) and let \(\chi_R \) be its characteristic function.
 a. What is \(\partial \chi_R / \partial x \)? What is the support of this distribution?
 b. What is the Fourier transform of \(\chi_R \)?
 c. What is the Fourier transform of the characteristic function of the complement of \(R \)?
 d. Is this transform a temperate function? Support your answer with a reason.

2. The causal fundamental solution \(E(x, t) \), with pole at \((x, t) = (0, 0)\), for the time-dependent diffusion equation in an absorbing medium satisfies
 \[
 \frac{\partial E}{\partial t} - \frac{\partial^2 E}{\partial x^2} + q^2 E = \delta(x, t),
 \]
 with \(E(x, t) = 0 \) for \((x, t) \in \mathbb{R} \times (-\infty, 0)\). Find \(E(x, t) \) by changing dependent variables \(E = \exp(-q^2 t) F \), keeping in mind that both \(E \) and \(F \) are distributions.

3. Let \(X \) be the linear space consisting of the continuous functions on \([0, 1]\). Verify that
 \[
 \| f \|_1 = \int_0^1 |f(x)| \, dx
 \]
 is a norm on \(X \). Show that \(X \), equipped with the norm \(\| \cdot \|_1 \), is not a Banach space, that is, the space is not complete.

4. Consider the boundary value problem
 \[
 \frac{\partial u}{\partial t} + \frac{\partial u}{\partial x} = -\mu u, \quad x > 0
 \]
 \[
 u(0, t) = \int_0^\infty \beta(x) u(x, t) \, dx
 \]
 \[
 u(x, 0) = \phi(x)
 \]
 Use the method of characteristics to show that the solutions have the form
 \[
 u(x, t) = \begin{cases}
 B(t - x) \exp[-\mu x] & \text{if } x < t, \\
 \phi(x - t) \exp[-\mu t] & \text{otherwise}
 \end{cases}
 \]
where \(B \) satisfies the integral equation
\[
B(t) = \int_0^t \beta(t - x) \exp[-\mu t + \mu x] B(x) dx + \exp(-\mu t) \int_0^\infty \beta(x + t) \phi(x) dx \quad t \geq 0
\]

5. Let \(T u(x) = \frac{u(x)}{x} \) when \(u \in L^2(0, 1) \).
 a. Find the largest domain \(D(T) \) for which \(T : D(T) \to L^2(0, 1) \).
 b. Show that \(T \) is densely defined, closed, self-adjoint and unbounded on this domain.

6. Let \(K(x, y) = 1 + xy \) and define the integral operator
\[
T u(x) = \int_0^1 K(x, y) u(y) dy.
\]
 a. Find the point spectrum of \(T, \sigma_p(T) \).
 b. Are there any other elements of the spectrum of \(T \)? Support your answer with reasons for credit.

7. Fill in the details of the following alternative approach to solving the Neumann problem
\[
-\Delta u = f \text{ for } x \in \Omega \text{ with } \frac{\partial u}{\partial n} = 0 \text{ on } \partial \Omega
\]
where \(\Omega \) is a bounded domain in \(\mathbb{R}^n \).
 a. Give a necessary condition on the right hand side for the problem to be solvable.
 b. Show that for any \(\epsilon > 0 \) there is exactly one solution \(u_\epsilon \) of
\[
-\Delta u + \epsilon u = f \quad x \in \Omega \text{ with } \frac{\partial u}{\partial n} = 0 \text{ on } \partial \Omega.
\]
 c. Show that \(\int_{\Omega} f(x) dx = 0 \) implies \(\int_{\Omega} u_\epsilon(x) dx = 0 \).
 d. Show that there exists \(u \in H^1(\Omega) \) such that \(u_\epsilon \to u \) weakly in \(u \in H^1(\Omega) \) as \(\epsilon \to 0 \) and that \(u \) is a solution of the Neumann problem.

8. Find all complex numbers, \(a, b, c \) such that
\[
\int_0^{2\pi} |e^x - a - be^{ix} - ce^{-ix}|^2 dx
\]
is a minimum and give the value of the minimum in terms of an easily computable (via elementary calculus) expression. Be sure to justify your answer for credit.

9. Let \(\ell^2 \) be the Hilbert space of infinite sequences \(x = \{x_i\}_{i=1}^\infty \) of real numbers with the norm \(\|x\| = \left(\sum_{i=1}^\infty |x_i|^2 \right)^{1/2} \). The right shift operator \(S : \ell^2 \to \ell^2 \) is defined by
\[
S\{x_1, x_2, x_3, \ldots\} = \{0, x_1, x_2, \ldots\}.
\]
 a. For each \(x \in \ell^2 \) and \(t \in \mathbb{R} \), there is an element \(y(t) \in \ell^2 \) given by
\[
y(t) = \sum_{n=0}^\infty \frac{t^n S^n x}{n!}.
\]
 Find \(y(t) \) and verify the convergence of the infinite series.
 b. Show that \(y(t) \) satisfies
\[
\frac{dy}{dt} = Sy, \quad y(0) = x.
\]