Linear Algebra and Applications: Numerical Linear Algebra

David S. Watkins
watkins@math.wsu.edu

Department of Mathematics
Washington State University
My Pledge to You
My Pledge to You

I promise not to cover as much material as I previously claimed I would.
Resources
Resources (a biased list)
Resources (a biased list)

Resources (a biased list)

Resources (a biased list)

Common Linear Algebra Computations
Common Linear Algebra Computations

- linear system $Ax = b$
Common Linear Algebra Computations

- linear system $Ax = b$
- overdetermined linear system $Ax = b$
Common Linear Algebra Computations

- linear system $Ax = b$
- overdetermined linear system $Ax = b$
- eigenvalue problem $Av = \lambda v$
Common Linear Algebra Computations

- linear system $Ax = b$
- overdetermined linear system $Ax = b$
- eigenvalue problem $Av = \lambda v$
- various generalized eigenvalue problems, e.g. $Av = \lambda Bv$
Linear Systems
Linear Systems

$Ax = b$, $n \times n$, nonsingular, real or complex
Linear Systems

- $Ax = b$, $n \times n$, nonsingular, real or complex
- Examples: FMC §1.2, 7.1; any linear algebra text
Linear Systems

- $Ax = b$, $n \times n$, nonsingular, real or complex
- Examples: FMC §1.2, 7.1; any linear algebra text
- Major tools:
 - Gaussian elimination (LU Decomp.)
 - various iterative methods
Overdetermined Linear Systems
Overdetermined Linear Systems

\[Ax = b, \; n \times m, \; n > m \]
Overdetermined Linear Systems

- $Ax = b, n \times m, n > m$
- often $n \gg m$
Overdetermined Linear Systems

- $Ax = b$, $n \times m$, $n > m$
- often $n \gg m$
- Example: fitting data by a straight line
Overdetermined Linear Systems

- $Ax = b, \, n \times m, \, n > m$
- often $n \gg m$
- Example: fitting data by a straight line
- minimize $\| b - Ax \|_2$ (least squares)
Overdetermined Linear Systems

- $Ax = b$, $n \times m$, $n > m$
- often $n \gg m$
- Example: fitting data by a straight line
- minimize $\| b - Ax \|_2$ (least squares)
- Major tools:
 - QR decomposition
 - singular value decomposition
Eigenvalue Problems
Eigenvalue Problems

- standard: $Av = \lambda v$, $n \times n$, real or complex
Eigenvalue Problems

- standard: $Av = \lambda v$, $n \times n$, real or complex
- Examples: FMC § 5.1
Eigenvalue Problems

- standard: \(Av = \lambda v, \ n \times n, \ \text{real or complex} \)
- Examples: FMC § 5.1
- generalized: \(Av = \lambda Bv \)
Eigenvalue Problems

- standard: $Av = \lambda v$, $n \times n$, real or complex
- Examples: FMC § 5.1
- generalized: $Av = \lambda Bv$
- Examples: FMC § 6.7
Eigenvalue Problems

- standard: \(Av = \lambda v \), \(n \times n \), real or complex
 - Examples: FMC § 5.1
- generalized: \(Av = \lambda Bv \)
 - Examples: FMC § 6.7
- product: \(A_1 A_2 \)
Eigenvalue Problems

- standard: $Av = \lambda v$, $n \times n$, real or complex
 - Examples: FMC § 5.1
- generalized: $Av = \lambda Bv$
 - Examples: FMC § 6.7
- product: $A_1 A_2$
 - Examples: generalized (AB^{-1}), SVD $(A^* A)$
Eigenvalue Problems

- standard: $Av = \lambda v$, $n \times n$, real or complex
- Examples: FMC § 5.1
- generalized: $Av = \lambda Bv$
- Examples: FMC § 6.7
- product: A_1A_2
- Examples: generalized (AB^{-1}), SVD (A^*A)
- quadratic: $(\lambda^2K + \lambda G + M)v = 0$
Sizes of Linear Algebra Problems
Sizes of Linear Algebra Problems

- small
Sizes of Linear Algebra Problems

- small
- medium
Sizes of Linear Algebra Problems

- small
- medium
- large
Solving Linear Systems:
Solving Linear Systems: small problems
Solving Linear Systems: small problems

- $Ax = b$, $n \times n$, n “small”
Solving Linear Systems: small problems

- $Ax = b$, $n \times n$, n “small”
- store A conventionally
Solving Linear Systems: small problems

- $Ax = b$, $n \times n$, n “small”
- store A conventionally
- solve using Gaussian elimination
Solving Linear Systems: small problems

- $Ax = b$, $n \times n$, n “small”
- store A conventionally
- solve using Gaussian elimination
- $A = LU$
Solving Linear Systems: small problems

- $Ax = b$, $n \times n$, n “small”
- store A conventionally
- solve using Gaussian elimination
- $A = LU$
- $PA = LU$ (partial pivoting)
Solving Linear Systems: small problems

- $Ax = b$, $n \times n$, n “small”
- store A conventionally
- solve using Gaussian elimination
- $A = LU$
- $PA = LU$ (partial pivoting)
- forward and back substitution
Solving Linear Systems: small problems

- $Ax = b$, $n \times n$, n “small”
- store A conventionally
- solve using Gaussian elimination
- $A = LU$
- $PA = LU$ (partial pivoting)
- forward and back substitution
- Questions: cost?
Solving Linear Systems: small problems

- $Ax = b$, $n \times n$, n “small”
- store A conventionally
- solve using Gaussian elimination
- $A = LU$
- $PA = LU$ (partial pivoting)
- forward and back substitution
- Questions: cost?, accuracy? (FMC Ch. 2)
Positive Definite Case
Positive Definite Case

- $A = A^*$, \hspace{1cm} x^*Ax > 0 \text{ for all } x \neq 0$
Positive Definite Case

- $A = A^*$, $x^*A x > 0$ for all $x \neq 0$
- $A = R^* R$ Cholesky decomposition
Positive Definite Case

- $A = A^*$, $x^*Ax > 0$ for all $x \neq 0$
- $A = R^*R$ Cholesky decomposition
- symmetric variant of Gaussian elimination
Positive Definite Case

- $A = A^*$, $x^* Ax > 0$ for all $x \neq 0$
- $A = R^* R$ Cholesky decomposition
- symmetric variant of Gaussian elimination
- flop count is halved
Solving Linear Systems:
Solving Linear Systems: medium problems
Solving Linear Systems: medium problems

- Larger problems are usually sparser.
Solving Linear Systems: medium problems

- Larger problems are usually sparser.
- Use sparse data structure.
Solving Linear Systems: medium problems

- Larger problems are usually sparser.
- Use sparse data structure.
- sparse Gaussian elimination
Solving Linear Systems: medium problems

- Larger problems are usually sparser.
- Use sparse data structure.
- sparse Gaussian elimination
- $A = LU$
Solving Linear Systems: medium problems

- Larger problems are usually sparser.
- Use sparse data structure.
- Sparse Gaussian elimination
- \(A = LU \)
- Factors “usually” less sparse than \(A \),
Solving Linear Systems: medium problems

- Larger problems are usually sparser.
- Use sparse data structure.
- Sparse Gaussian elimination
- $A = LU$
- Factors “usually” less sparse than A, but still sparse
Solving Linear Systems: medium problems

- Larger problems are usually sparser.
- Use sparse data structure.
- Sparse Gaussian elimination
- \(A = LU \)
- Factors “usually” less sparse than \(A \), but still sparse
- Crucial question: Can factors fit in main memory?
Solving Linear Systems:
Solving Linear Systems: large problems
Solving Linear Systems: large problems

L and U factors may be too large to store ...
Solving Linear Systems: large problems

- L and U factors may be too large to store . . .
- Use an iterative method.
Solving Linear Systems: large problems

- L and U factors may be too large to store . . .
- Use an iterative method.
- direct vs. iterative methods
Solving Linear Systems: large problems

- L and U factors may be too large to store . . .
- Use an iterative method.
- direct vs. iterative methods
- Some buzz words: descent method, conjugate gradients (CG), GMRES, . . .
Solving Linear Systems: large problems

- L and U factors may be too large to store . . .
- Use an iterative method.
- direct vs. iterative methods
- Some buzz words: descent method, conjugate gradients (CG), GMRES, . . .
- preconditioners,
Solving Linear Systems: large problems

- L and U factors may be too large to store . . .
- Use an iterative method.
- Direct vs. iterative methods
- Some buzz words: descent method, conjugate gradients (CG), GMRES, . . .
- Preconditioners, and on and on and on.
Solving Linear Systems: large problems

- L and U factors may be too large to store . . .
- Use an iterative method.
- direct vs. iterative methods
- Some buzz words: descent method, conjugate gradients (CG), GMRES, . . .
- preconditioners, and on and on and on.
- FMC Chapter 7
Solving Linear Systems: large problems

- L and U factors may be too large to store . . .
- Use an iterative method.
- direct vs. iterative methods
- Some buzz words: descent method, conjugate gradients (CG), GMRES, . . .
- preconditioners, and on and on.
- FMC Chapter 7
Moving On
Moving On
Orthogonal Transformations
Moving On Orthogonal Transformations

- generally useful computing tools
Moving On
Orthogonal Transformations

- generally useful computing tools
- sticking to real case for simplicity
Moving On
Orthogonal Transformations

- generally useful computing tools
- sticking to real case for simplicity
- standard inner product: \[\langle x, y \rangle = \sum_{j=1}^{n} x_j y_j \]
Moving On
Orthogonal Transformations

- generally useful computing tools
- sticking to real case for simplicity
- standard inner product: \(\langle x, y \rangle = \sum_{j=1}^{n} x_j y_j \)
- Euclidean norm: \(\| x \|_2 = \left(\sum_{j=1}^{n} x_j^2 \right)^{1/2} \)
Moving On
Orthogonal Transformations

- generally useful computing tools
- sticking to real case for simplicity
- standard inner product: \[\langle x, y \rangle = \sum_{j=1}^{n} x_j y_j \]
- Euclidean norm: \[\| x \|_2 = \left(\sum_{j=1}^{n} x_j^2 \right)^{1/2} \]
- \[\| x \|_2 = \sqrt{\langle x, x \rangle} \]
Moving On
Orthogonal Transformations

- generally useful computing tools
- sticking to real case for simplicity
- standard inner product: \(\langle x, y \rangle = \sum_{j=1}^{n} x_j y_j \)

- Euclidean norm: \(\| x \|_2 = \left(\sum_{j=1}^{n} x_j^2 \right)^{1/2} \)

- \(\| x \|_2 = \sqrt{\langle x, x \rangle} \)

- definition of orthogonal: \(Q^T = Q^{-1} \)
Moving On
Orthogonal Transformations

- generally useful computing tools
- sticking to real case for simplicity
- standard inner product: \[\langle x, y \rangle = \sum_{j=1}^{n} x_j y_j \]
- Euclidean norm: \[\| x \|_2 = \left(\sum_{j=1}^{n} x_j^2 \right)^{1/2} \]
- \[\| x \|_2 = \sqrt{\langle x, x \rangle} \]
- definition of orthogonal: \[Q^T = Q^{-1} \]
- properties of orthogonal matrices
Elementary Reflectors
Elementary Reflectors

= Householder transformations
Elementary Reflectors

- Householder transformations
- one of two major classes of computationally useful orthogonal transformations
Elementary Reflectors

- Householder transformations
- one of two major classes of computationally useful orthogonal transformations
- \(Q = I - 2uu^T, \quad \|u\|_2 = 1 \)
Elementary Reflectors

- = Householder transformations
- one of two major classes of computationally useful orthogonal transformations
- \[Q = I - 2uu^T, \quad \| u \|_2 = 1 \]
- geometric action
Elementary Reflectors

- Householder transformations
- one of two major classes of computationally useful orthogonal transformations
- \(Q = I - 2uu^T, \quad \| u \|_2 = 1 \)
- geometric action
- \(Qx = y \)
Elementary Reflectors

- Householder transformations
- One of two major classes of computationally useful orthogonal transformations
- \(Q = I - 2uu^T, \quad \| u \|_2 = 1 \)
- Geometric action
- \(Qx = y \)
- Creating zeros
Elementary Reflectors

- Householder transformations
- one of two major classes of computationally useful orthogonal transformations
- \[Q = I - 2uu^T, \quad \| u \|_2 = 1 \]
- geometric action
- \[Qx = y \]
- creating zeros
- details: FMC Chapter 3
Elementary Reflectors

- Householder transformations
- One of two major classes of computationally useful orthogonal transformations

\[Q = I - 2uu^T, \quad \| u \|_2 = 1 \]
- Geometric action
- \(Qx = y \)
- Creating zeros
- Details: FMC Chapter 3
- \(QR \) decomposition
Uses of the QR Decomposition
Uses of the QR Decomposition

- $Ax = b, \quad n \times n$
Uses of the QR Decomposition

- $Ax = b$, $n \times n$
- overdetermined system
Uses of the QR Decomposition

- $Ax = b$, $n \times n$
- overdetermined system
- orthonormalizing vectors
The Gram-Schmidt Process
The Gram-Schmidt Process

- orthonormalization of vectors
The Gram-Schmidt Process

- orthonormalization of vectors
- relationship to QR decomposition
The Gram-Schmidt Process

- orthonormalization of vectors
- relationship to QR decomposition
- reorthogonalization
The SVD
The SVD

- singular value decomposition
The SVD

- singular value decomposition
- \(A = U \Sigma V^T \)
The SVD

- singular value decomposition
- \(A = U\Sigma V^T \)
- product eigenvalue problem
The SVD

- singular value decomposition
- $A = U\Sigma V^T$
- product eigenvalue problem
- FMC Chapter 4
The SVD

- singular value decomposition
- $A = U\Sigma V^T$
- product eigenvalue problem
- FMC Chapter 4
- numerical rank determination
The SVD

- singular value decomposition
- \(A = U \Sigma V^T \)
- product eigenvalue problem
- FMC Chapter 4
- numerical rank determination
- solution of least-squares problem
End of Part I