Jordan Canonical Form

In dynamical systems one considers:

\[x(t+1) = A x(t) \]

or

\[\dot{x} = A x \]

If \(P \) is an invertible matrix:

\[P x(t+1) = P A P^{-1} P x(t) \]

\[y(t+1) = B y(t) \]

We would like to make \(B \) as simple as possible.

Definition: \(B \) is similar to \(A \) provided there exists an invertible \(P \) with \(P A P^{-1} = B \).

This leads to Jordan Canonical Form.

Let \(A_{n \times n} \) be a complex matrix.

\(A \) is similar to a block-diagonal matrix

\[P A P^{-1} = \begin{bmatrix} B_1 & & \\ & \ddots & \\ & & B_k \end{bmatrix} \]

where each of the blocks is a matrix

\[J_m(\lambda) = \begin{bmatrix} \lambda & 1 & 0 \\ & \ddots & \ddots \\ & 0 & \lambda \end{bmatrix} \]

for some \(m \) and \(\lambda \).

The Jordan Canonical Form is very sensitive to perturbations.

Eq. \[J_{JC}(A) \]

\[\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \]

\[\begin{bmatrix} 1 & 0 \\ 0 & i \end{bmatrix} \]

\[\begin{bmatrix} 1 & 0 \\ 0 & i - \varepsilon \end{bmatrix} \]

\[\begin{bmatrix} 1 & 0 \\ \varepsilon & 1 \end{bmatrix} \]

The diagonal entries of \(J_{JC}(A) \) are the eigenvalues of \(A \).

If we start with a real matrix \(A \) and insist that \(P \) be real, then \(A \) is similar to a block-diagonal matrix, each of whose blocks is either \(J_m(\lambda), \lambda \in \mathbb{R} \), some \(m \), or

\[J_{2m}(a+bi) = \begin{bmatrix} a & b & 1 & 0 \\ -b & a & 0 & 1 \\ & & \ddots & \end{bmatrix} \]

for some \(a+bi \), \(b \neq 0 \), and some \(m \).
Nonnegative Matrices.

$A \geq 0$ means that each entry of A is nonnegative real.

$A > 0$ means that each entry of A is positive.

A square A is called **positive** if $\rho(A) = \max \{ \lambda \}$ over all λ an **e-value** of A.

What can you say about the e-values of $A > 0$?

Perron's Thm

Let $A_{n \times n}$ be a positive matrix. Then

(a) $\rho(A)$ is an eigenvalue of A.

(b) f is a positive e-vector of A corresponding to $\rho(A)$.

(c) If λ is an e-value of A and $\lambda < \rho(A)$, then $\lambda < 1$.

In complex plane:

![Complex Plane Diagram](image)

Brouwer's Fixed Point Thm

If $f : D^n \rightarrow D^n$ is a continuous function on disk in \mathbb{R}^n, then f has a fixed point (i.e. $f(x) = x$).

Case $n = 1$: $f : [0, 1] \rightarrow [0, 1]$.

Proof of Perron's Thm

Let $A_{n \times n} > 0$.

Let $S = \{ x \in \mathbb{R}^n : x \geq 0, x_1 + x_2 + \cdots + x_n = 1 \}$.

Claim: S is topol. equiv. to D^{n-1}.

Consider $f : S \rightarrow S$ by $f(x) = \frac{Ax}{\|Ax\|}$.

Note $A > 0$, $x > 0$, so $\|Ax\| > 0$ implies $\|Ax\| > 0$.

Clearly f is continuous.

By the Brouwer's Fixed Point Thm, there is an x such that $f(x) = x$.

I.e. $Ax = (\|Ax\|)x$.

So x is an e-vector with corresponding e-value $\|Ax\|$.

Let's show that $\|Ax\|$ is $\rho(A)$.

Let λ be an e-value of A and y^* a left e-vector.

So $y^*A = \lambda y^* \Rightarrow |y^*A| = |\lambda y^*| = |\lambda| |y^*|$.

Using the entrywise modulus, $|y^*A| \geq \Delta$-inequality.
the entry of \(y^T A \) is \(\sum \frac{y_i a_{ij}}{y_j a_{ij}} \) for \(i \neq j \). Thus \(y^T A \geq 1_{k_1} 1_{y^T} \) and \(y^T A x \geq \lambda x^T y^T \) for all \(x \).

So \(A^T x \geq \lambda x \). Thus \(\rho(A) = \lambda^T A x \)

\(x \) must be positive; \(A x = \frac{(A^T A x) x}{\sum \lambda_i} \).

To prove (c) we need to show that if \(\lambda = \rho(A) \), then

\(A = \rho(A) \).

Assume \(\lambda = \rho(A) \), i.e. \(\lambda = \rho(A) e^{i\theta} \) for some \(\theta \).

This requires equalities throughout our analysis.

We need equality in our application of the triangle inequality

\(\sum \frac{y_i a_{ij}}{y_j a_{ij}} \leq \sum \frac{y_i a_{ij}}{y_j a_{ij}} \).

This requires that the arguments of \(y_i a_{ij} \) are the same. Since all \(a_{ij} \) are positive, this means that the arguments of \(y_i \) are the same.

So \(\lambda = e^{i\theta} \) for some \(\theta \).

\(\lambda \) is a left eigenvector of \(A \), i.e. \(\lambda y^T A = \lambda y^T \).

By assumption, \(\lambda = \rho(A) \), so \(\lambda = \rho(A) \).

How much of Perron's Theorem carries over to nonnegative matrices?

Examples

1. \(A = \begin{bmatrix} 2 & 1 \\ 0 & 1 \end{bmatrix} \)

 - values: \(2, 1 \)
 - \(\rho(A) \) is a real e-value
 - vector corresponding to \(\rho(A) \) is \(\begin{bmatrix} 0 \\ 1 \end{bmatrix} \) not positive.

2. \(A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \)

 - values: \(-1, 1\)
 - \(\rho(A) = 1 \) is an e-value
 - But \(\lambda = 1 \) satisfies \(\lambda = 1 \).
Where did we use positivity in our proof?

A > 0.
Consider \(f : S \to S \) by \(f(x) = \frac{Ax}{\|Ax\|} \).

How can we guarantee that \(\|Ax\| \) is nonzero for all \(x \in S \).
\(\|Ax\| = \text{sum of the entries of } Ax \). Answer: no column of \(A \) is all 0's.

\(A \left[\begin{array}{c} x \\ \hat{y} \\ \delta \\ \gamma \\ \beta \\ 0 \end{array} \right] = 0 \) iff 1st \(k \) columns of \(A \) are 0's.

by the Brouwer F.T. \(f \) has a fixed point.
J.e. there is an \(x \in S \) with \(Ax = (\|Ax\|)x \)

We'd like \(x > 0 \). How can we guarantee this?

\[
A \left[\begin{array}{c} x \\ \hat{y} \\ \delta \\ \gamma \\ \beta \\ 0 \end{array} \right] = 0
\]

Ans. By requiring that there is no permutation matrix \(P \)
such that \(PAP^T = k \left[\begin{array}{c} \text{orthogonal} \\ \text{non-} \| \text{orthogonal} \end{array} \right] \)

\(\det A \) is irreducible if there does not exist a permutation matrix \(P \) such that \(PAP^T = k \left[\begin{array}{c} \text{orthogonal} \\ \text{non-} \| \text{orthogonal} \end{array} \right] \)

Let's assume that \(A \geq 0 \) and \(A \) is irreducible.
(i.e. \(n \geq 2 \), then \(A \) irreducible \(\Rightarrow A \) has no col. of all 0's).

We know that \(Ax = (\|Ax\|)x \) and \(x > 0 \).
Let \(y^* \) be a left eigen-vector for \(A \) corresponding to \(\lambda \).

\[
y^*A = \lambda y^* \\
1y^*\|A\| = 1x^*y^* \|A\| \\
1y^*\|A\| \geq 1x^*y^* \|A\| \xrightarrow{\|A\|} (\|Ax\|) \|y\| \|x\| \\
\]

Cancelling gives: \(\|Ax\| \geq 1x^* \) i.e. \(\rho(A) = \|Ax\| \)
Theorem (Perron–Frobenius)

Let $A_{n \times n} \geq 0$ with $n \geq 2$ and A irreducible. Then

(a) $\rho(A)$ is an e-value of A

(b) I an eigen-vector x of A corresponding to $\rho(A)$ with $x > 0$.

Note: $[0 \ 1]^{T}$ irreducible, $A \geq 0$, but e-values are $-1, 1$.

Irreducibility is not enough to show $1\lambda_1 = \rho(A) \Rightarrow \lambda = \rho(A)$

We'd still like to say something about e-values λ of $A \geq 0$ irreducible with $1\lambda_1 = \rho(A)$.

This comes down to analyzing equality in Δ-inequality.

$y^{*} A = \lambda y^{*}$

$|y^{*} A| \geq |\lambda_1| |y^{*}|$

If $1\lambda_1 = \rho(A)$, then we must have equality in this Δ-inequalities.

The j^{th} inequality

$|\overline{y}_{1} a_{1j} + \overline{y}_{2} a_{2j} + \ldots + \overline{y}_{n} a_{nj}| \leq |y_{1} a_{1j} + \ldots + y_{n} a_{nj}|$

Equality iff all nonzero terms among $\overline{y}_{k} a_{kj}$ have the same argument.

iff all the y_{k} with $a_{kj} \neq 0$ have the same argument.

In terms of the digraph of A:

Equality requires $\arg(y_{k}) = \arg(y_{l})$ whenever $k \rightarrow l$.

Let's look at $y^{*} A = \lambda y^{*} = e^{i\theta} \rho(A) y^{*}$

The j^{th} entry $\sum_{k \rightarrow j} \overline{y}_{k} a_{kj} = e^{i\theta} \rho(A) \overline{y}_{j}$

All \overline{y}_{k} where $k \rightarrow j$ have the same argument β.

$\sum_{k \rightarrow j} \overline{y}_{k} a_{kj}$ has argument β

$e^{i\theta} \rho(A) \overline{y}_{j}$ has argument $\theta + \arg(\overline{y}_{j})$ \Rightarrow $\beta = \theta - \arg(\overline{y}_{j}) \mod(2\pi)$

$\arg(y_{k}) + \theta = \arg(y_{j})$
Upto: \(k - j \)

\[
\arg(y_k) + \theta = \arg(y_j)
\]

So: \(\theta = \frac{2\pi}{p} \) for some \(p \geq 1 \)

and

\[
PAP^T = \begin{bmatrix}
A_1 & 0 \\
0 & A_2 \\
& \\
A_k
\end{bmatrix}
\]

if \(p \geq 2 \)

or \(p = 1 \), previous proof shows \(\lambda = p(A) \).

Defn: \(A_{n \times n} \geq 0 \) is primitive provided the \(\gcd \) of the cycle lengths of the cycles in \(D(A) \) is \(1 \).

Can show \(A \) is primitive iff \(A \) is irreducible and \(A^m > 0 \) for some \(m \).

Ex:

\[
A = \begin{bmatrix}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{bmatrix}
\]

\(D(A) \) has 3 cycles

\(\lambda \) is not primitive

\(3 \) - primitive.

Can't be the spectrum of an irreducible nonnegative matrix.
Thm (Perron–Frobenius)
\(A > 0 \), irreducible and primitive.

Then
- \(\rho(A) \) is an e-value of \(A \)
- \(\exists \) a corresponding e-vector \(x \) with \(x > 0 \)
- \(\lambda \) an e-value of \(A \) and \(1 \lambda \rho(A) \Rightarrow \lambda = \rho(A) \).

Ranking players in round robin tournaments.

A tournament on \(n \) players consists of a competition where each pair of players play exactly one game against each other and no ties are allowed. Total of \(\binom{n}{2} \) games.

We can record the results of a tournament by a matrix
\[
A = [a_{ij}] \quad a_{ij} = \begin{cases}
1 & \text{if } i \to j \\
0 & \text{otherwise}
\end{cases}
\]
or
by a digraph

\[
\text{Eq 1. } A = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 \end{bmatrix}
\]

Results
- 1 beats 2
- 3 beats 1
- 3 beats 2
- 4 beats 1, 2, 3

Sometimes we only show the down arcs

\[
\text{Eq 2. } A = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}
\]

4 is the best player

How can we rank or determine the strengths of the players?

\[A + A^T = \begin{bmatrix} 0 & 1's \\ 1's & \vdots \\ \vdots & \vdots \\ 1's & 0 \end{bmatrix} = J - I \]

\(S = A \| \) is the vector that records the number of wins for each player.

Challenge: Find a way to rank the players of the tournament.
\[
E_x = \begin{bmatrix}
0 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 0 \\
1 & 0 & 0 & 0 & 1 & 1 \\
1 & 1 & 0 & 0 & 0 & 1 \\
1 & 1 & 1 & 0 & 0 & 0
\end{bmatrix}
\]
\[
A = \begin{bmatrix}
2 & & & & & \\
2 & & & & & \\
3 & & & & & \\
\end{bmatrix}
\]

Player 4 wins 3 games: beat 1, 5, 6
Player 5 wins 3 games: beat 1, 2, 6
Player 6 wins 3 games: beat 1, 2, 3

Player 4 could argue they beat better players, so they are the best.
So S only counts wins; it does not account for who
those wins were against.

\[
(A S)_i = \sum_j s_{ij} = \text{sum of the scores of the players that } i \text{ beats}
\]

\[
\begin{bmatrix}
1 \\
5 \\
6 \\
8 \\
7 \\
6
\end{bmatrix}
\]

Any time we have a "strength" vector \(v \),
\[
\frac{A v}{||A v||}
\]

is arguably a "better" strength vector because it
incorporates the strengths of the players a player beats.

\underline{Scheme (1950's Kendall-Wei')}

Start with \(v_0 = 1/n \)

\[
v_{k+1} = \frac{A v_k}{||A v_k||}
\]

Note: \(||v_k|| = 1 \) for all \(k \)

If \(A \) is irreducible, then \(\lim_{k \to \infty} v_k = x \) is an eigen vector

corresponding to \(\rho(A) \)

K-W proposed ranking the players according to \(x \),

i.e. \(i \) is stronger than \(j \) whenever \(x_i > x_j \).
\[P = 1.7194 \]

\[X = \begin{bmatrix} 16 \\ 18 \\ 10 \\ 20 \\ 26 \end{bmatrix} \]

One can measure how competitive the tournament is by

\[\text{var}(X) = \frac{\sum_{i \neq j} (X_i - X_j)^2}{(X^T X)} \]

Larger variance corresponds to less competitive.

\[
\text{Var}(x) = \frac{\sum_{i \neq j} (x_i - x_j)^2}{x^T x} = \left(\frac{\sum_{i=1}^n (n-1)x_i^2 - 2 \sum_{i \neq j} x_i x_j}{\sum_{i=1}^n x_i^2} \right) = \\
= \frac{\sum_{i=1}^n (n-1)x_i^2 - x^T (J-I)x}{\sum_{i=1}^n x_i^2} = \frac{\sum_{i=1}^n (n-1)x_i^2 - x^T (A + A^T)x}{\sum_{i=1}^n x_i^2} = \\
= \frac{\sum_{i=1}^n (n-1)x_i^2 - 2p(A)x^T x}{\sum_{i=1}^n x_i^2} = \left[n-1 - 2p(A) \right]
\]

So \(\text{Var}(X) = n-1 - 2p(A) \)

Uphalt: \(p(A) \leq \frac{n-1}{2} \) and \(\text{Var}(X) \) is large when \(p(A) \) is small.

Q: (Brualdi - Li)

Which tournaments on \(n \) players are the most competitive? i.e. which tournaments on \(n \) players have the largest \(p(A) \)?

\[\max p(A) \]

A: \(A(0,1) \)

\[A + A^T = J - I. \]
\[
\frac{n = 3}{1 \hspace{1cm} \text{or} \hspace{1cm} 1 \hspace{1cm} 2 \hspace{1cm} 3}
\]
\[
\begin{bmatrix}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{bmatrix}
\quad \text{or} \quad
\begin{bmatrix}
0 & 1 & 1 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{bmatrix}
\]
\[
\rho = 1 \quad \rho = 0
\]

\[
\frac{n = 5}{1 \hspace{1cm} 2 \hspace{1cm} 3 \hspace{1cm} 4 \hspace{1cm} 5}
\]
\[
\begin{bmatrix}
0 & 1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 & 1 \\
1 & 0 & 0 & 0 & 1 \\
1 & 1 & 0 & 0 & 0
\end{bmatrix}
\]
\[
A_1 = 24 \quad \rho = 2
\]

Best possible.

If \(n = 2k + 1 \) any regular tournament (i.e. each player beats \(k \) players) has \(\rho = k = \frac{n - 1}{2} \).

So the regular tournaments are most competitive (for \(n \) odd).

For \(n \) even there are no regular tournaments.

(Why? \(\# \text{games} = \frac{n(n-1)}{2} \), \(\# \text{of games won by each player in reg. turn} = \frac{n-1}{2} \) odd if \(n \) is even.

Brauidd - Li

\[\text{What is } \max_{n \times n \text{ matrix}} \rho(A) ? \]

\[\text{Conjecture: occurs for} \quad n \text{ known for } n \leq 12.\]