Homework 1.

Exercise 1 Describe the solutions as functions of time $t \in \mathbb{R}$ and the phase portraits in the plane \mathbb{R}^2 of $\dot{x} = Ax$ for

$$A = \begin{pmatrix} -1 & 0 \\ 0 & -2 \end{pmatrix}, A = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, A = \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix}.$$

What are the relations between the corresponding solutions?

Exercise 2 Describe the solutions as functions of time $t \in \mathbb{R}$ and the phase portraits in the plane \mathbb{R}^2 of $\dot{x} = Ax$ for

$$A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, A = \begin{pmatrix} -1 & 1 \\ 0 & -1 \end{pmatrix}.$$

Exercise 3 Compute the solutions of $\dot{x} = Ax$ for

$$A = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}.$$

Exercise 4 Determine the stable, center, and unstable subspaces associated with the matrix

$$A = \begin{pmatrix} 3 & -4 & 1 \\ 1 & 0 & -1 \\ -1 & 4 & -3 \end{pmatrix}.$$

Exercise 5 Show that for a matrix $A \in \text{gl}(d, \mathbb{R})$ and $T > 0$ the spectrum $\sigma(e^{AT})$ is given by $\{e^{\lambda T}, \lambda \in \sigma(A)\}$. Show also that the maximal dimension of a Jordan block for $\mu \in \sigma(e^{AT})$ is given by the maximal dimension of a Jordan block of an eigenvalue $\lambda \in \sigma(A)$ with $e^{\lambda T} = \mu$. (Take into account that $e^{i\omega T} = e^{i\omega'} T$ for real ω, ω' does not imply $\omega = \omega'$).

As an example, discuss the eigenspace for the eigenvalue 1 of e^{AT} and the eigenspaces of A with

$$A = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}.$$
Exercise 6 Consider the following differential equation:

\[m \ddot{y}(t) + c \dot{y}(t) + ky(t) = 0 \]

where \(m, c, k > 0 \) are constants. Determine all solutions in the following three cases: (i) \(c^2 - 4km > 0 \) (ii) \(c^2 - 4km = 0 \) (iii) \(c^2 - 4km < 0 \). Show that in all cases all solutions tend to the origin as \(t \to \infty \) (the system is asymptotically stable). Determine (in each of the cases (i) to (iii)) the solution \(\varphi(\cdot) \) with \(\varphi(0) = 1 \) and \(\dot{\varphi}(0) = 0 \). Show that in case (iii) all solutions can be written in the form \(\varphi(t) = Ae^{\alpha t} \cos(\beta t - \vartheta) \). Determine \(\alpha \) and \(\beta \).