Objectives for the First, Second and Third Midterm Exams, and in addition

State the Definitions and Use Them in Proofs.

● Series
 – Series, partial sum
 – Convergent series, divergent series
 – Absolutely convergent series, conditionally convergent series.

● Limits of Functions, Continuity
 – Cluster point of a set $S \subset \mathbb{R}$.
 – Isolated point of a set.
 – Limit of a function at a cluster point of its domain.
 – Restriction of a function to a subset of its domain.
 – One-sided limit of a function at a point.
 – Continuity of a function at a point of its domain.
 – Continuous function on a set.

State the Theorems and Use Them in Proofs.

● Series
 – A series converges if and only if every one of its tail series converges.
 – Cauchy convergence criterion for series.
 – Necessary condition for convergence of a series
 (also known as the divergence test).
 – Convergence criterion (and sum when convergent) for geometric series.
 – Divergence of the harmonic series.
 – Linear operations on convergent series.
 – An absolutely convergent series is convergent.
 – Comparison test.
 – Necessary and sufficient condition for convergence of the series $\zeta(p) = \sum_{n=1}^{\infty} n^{-p}$.
 – Ratio test for series.
 – Triangle inequality for series.
 – Limit comparison test.

● Limits of Functions, Continuity
 – Necessary and sufficient condition for a point to be a cluster point of a set.
 – Uniqueness of the limit of a function at a point.
 – A function has a limit at a point if and only if it has a sequential limit at that point.
 – Squeeze lemma for limits of functions.
 – Limits of sums, products and quotients.
 – Continuity is equivalent to sequential continuity.
 – The composition of continuous functions is continuous.
 – Examples of extremely discontinuous functions.
 – A continuous function $f : [a, b] \to \mathbb{R}$ is bounded.
 – Maximum-minimum theorem for continuous functions.
 – Bolzano’s intermediate value theorem for continuous functions.