Objectives for the First Midterm Exam, and in addition

STATE THE DEFINITIONS AND USE THEM IN PROOFS

• Numbers
 – Congruence of integers
 – Rational number, irrational number
 – Prime number
 – Binomial coefficients
• Ordered Sets
 – Upper (resp. lower) bound of a subset
 – Bounded subset
 – Least upper (resp. greatest lower) bound of a subset
 – Least upper bound property (completeness)
• Relations and Functions
 – Relation, Function
 – Domain, codomain and range of a function: equality of functions
 – Injective function, surjective function, bijective function
 – Composition of functions
 – Identity function on a set
 – Inverse of a relation
 – Image of a set in the domain of a function;
 – Preimage (inverse image) of a subset of a function’s codomain

STATE THE THEOREMS AND USE THEM IN PROOFS

• Integers
 – Division algorithm for integers
 – Arithmetical properties of congruence of integers
 – For integers \(a \) and \(b \) not both zero, the \(\gcd(a, b) \) is the smallest positive integral linear combination of \(a \) and \(b \).
 – Euclid’s Lemma: If \(a \) and \(b \) are integers and \(p \) is a prime such that \(p \mid ab \), then \(p \mid a \) or \(p \mid b \).
 – Properties of binomial coefficients:
 * Pascal triangle relation
 * Binomial coefficient \(\binom{n}{k} \) is the number of \(k \)-element subsets of an \(n \)-element set.
 * Factorial formula for binomial coefficients
 – Pigeonhole Principle
• Ordered Sets
 – Basic properties of ordered fields
 – If \(a \) and \(b \) are elements of an ordered field, then \(a = b \iff a \leq b \land b \leq a \).
• Arithmetic-geometric mean inequality: if \(x \) and \(y \) are nonnegative real numbers, then \(\sqrt{xy} \leq \frac{1}{2}(x+y) \).
• Bernoulli’s inequality: if \(n \in \mathbb{N} \) and \(x > -1 \), then \(1 + nx \leq (1 + x)^n \).
• Sum of a finite geometric progression: if \(c \in \mathbb{R} \) and \(c \neq 1 \), then for all \(n \in \mathbb{N} \),
\[
1 + c + c^2 + \cdots + c^n = \frac{1 - c^{n+1}}{1 - c}.
\]
• The set of positive rational numbers \(x \) satisfying \(x^2 < 2 \) has no least upper bound in \(\mathbb{Q} \).
• Functions
 − Composition of functions is associative.
 − The composition of injective functions is injective.
 − The composition of surjective functions is surjective.
 − A function \(f \) is bijective if and only if the inverse relation \(f^{-1} \) is a function.
 − Inverse functions preserve all set operations.
 − Functions do not necessarily preserve set operations:
 If \(f : A \to B \) and \(W, X \subseteq A \) and \(Y \subseteq B \), then
 * \(f(W \cap X) \subseteq f(W) \cap f(X) \), but equality need not hold.
 * \(f(W \cup X) = f(W) \cup f(X) \).
 * \(X \subseteq f^{-1}(f(X)) \), but equality need not hold.
 * \(Y \subseteq f(f^{-1}(Y)) \), but equality need not hold.

Use Proof Techniques

• Use the contrapositive to prove statements of the form \(P \Rightarrow Q \).
• Construct proofs by contradiction.
• Prove biconditional statements.
• Prove existence and uniqueness statements.
• Prove set-membership statements.
• Prove that a set is a subset of, or is equal to, another set.
• To disprove a statement \(P \):
 − Prove \(\sim P \); or
 − Assume \(P \) and derive a contradiction.
• Use a counterexample to disprove a universal statement.
• Construct proofs by induction.
• Prove that a function is
 − Injective
 − Surjective
 − Bijective